6,270 research outputs found

    Efficient robust routing for single commodity network flows

    Get PDF
    We study single commodity network flows with suitable robustness and efficiency specs. An original use of a maximum entropy problem for distributions on the paths of the graph turns this problem into a steering problem for Markov chains with prescribed initial and final marginals. From a computational standpoint, viewing scheduling this way is especially attractive in light of the existence of an iterative algorithm to compute the solution. The present paper builds on [13] by introducing an index of efficiency of a transportation plan and points, accordingly, to efficient-robust transport policies. In developing the theory, we establish two new invariance properties of the solution (called bridge) \u2013 an iterated bridge invariance property and the invariance of the most probable paths. These properties, which were tangentially mentioned in our previous work, are fully developed here. We also show that the distribution on paths of the optimal transport policy, which depends on a \u201ctemperature\u201d parameter, tends to the solution of the \u201cmost economical\u201d but possibly less robust optimal mass transport problem as the temperature goes to zero. The relevance of all of these properties for transport over networks is illustrated in an example

    Knudsen gas in a finite random tube: transport diffusion and first passage properties

    Full text link
    We consider transport diffusion in a stochastic billiard in a random tube which is elongated in the direction of the first coordinate (the tube axis). Inside the random tube, which is stationary and ergodic, non-interacting particles move straight with constant speed. Upon hitting the tube walls, they are reflected randomly, according to the cosine law: the density of the outgoing direction is proportional to the cosine of the angle between this direction and the normal vector. Steady state transport is studied by introducing an open tube segment as follows: We cut out a large finite segment of the tube with segment boundaries perpendicular to the tube axis. Particles which leave this piece through the segment boundaries disappear from the system. Through stationary injection of particles at one boundary of the segment a steady state with non-vanishing stationary particle current is maintained. We prove (i) that in the thermodynamic limit of an infinite open piece the coarse-grained density profile inside the segment is linear, and (ii) that the transport diffusion coefficient obtained from the ratio of stationary current and effective boundary density gradient equals the diffusion coefficient of a tagged particle in an infinite tube. Thus we prove Fick's law and equality of transport diffusion and self-diffusion coefficients for quite generic rough (random) tubes. We also study some properties of the crossing time and compute the Milne extrapolation length in dependence on the shape of the random tube.Comment: 51 pages, 3 figure

    Diffusive propagation of wave packets in a fluctuating periodic potential

    Full text link
    We consider the evolution of a tight binding wave packet propagating in a fluctuating periodic potential. If the fluctuations stem from a stationary Markov process satisfying certain technical criteria, we show that the square amplitude of the wave packet after diffusive rescaling converges to a superposition of solutions of a heat equation.Comment: 13 pages (v2: added a paragraph on the history of the problem, added some references, correct a few typos; v3 minor corrections, added keywords and subject classes

    State space collapse and diffusion approximation for a network operating under a fair bandwidth sharing policy

    Full text link
    We consider a connection-level model of Internet congestion control, introduced by Massouli\'{e} and Roberts [Telecommunication Systems 15 (2000) 185--201], that represents the randomly varying number of flows present in a network. Here, bandwidth is shared fairly among elastic document transfers according to a weighted α\alpha-fair bandwidth sharing policy introduced by Mo and Walrand [IEEE/ACM Transactions on Networking 8 (2000) 556--567] [α(0,)\alpha\in (0,\infty)]. Assuming Poisson arrivals and exponentially distributed document sizes, we focus on the heavy traffic regime in which the average load placed on each resource is approximately equal to its capacity. A fluid model (or functional law of large numbers approximation) for this stochastic model was derived and analyzed in a prior work [Ann. Appl. Probab. 14 (2004) 1055--1083] by two of the authors. Here, we use the long-time behavior of the solutions of the fluid model established in that paper to derive a property called multiplicative state space collapse, which, loosely speaking, shows that in diffusion scale, the flow count process for the stochastic model can be approximately recovered as a continuous lifting of the workload process.Comment: Published in at http://dx.doi.org/10.1214/08-AAP591 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org
    corecore