3,126 research outputs found

    Nearly Optimal Private Convolution

    Full text link
    We study computing the convolution of a private input xx with a public input hh, while satisfying the guarantees of (ϵ,δ)(\epsilon, \delta)-differential privacy. Convolution is a fundamental operation, intimately related to Fourier Transforms. In our setting, the private input may represent a time series of sensitive events or a histogram of a database of confidential personal information. Convolution then captures important primitives including linear filtering, which is an essential tool in time series analysis, and aggregation queries on projections of the data. We give a nearly optimal algorithm for computing convolutions while satisfying (ϵ,δ)(\epsilon, \delta)-differential privacy. Surprisingly, we follow the simple strategy of adding independent Laplacian noise to each Fourier coefficient and bounding the privacy loss using the composition theorem of Dwork, Rothblum, and Vadhan. We derive a closed form expression for the optimal noise to add to each Fourier coefficient using convex programming duality. Our algorithm is very efficient -- it is essentially no more computationally expensive than a Fast Fourier Transform. To prove near optimality, we use the recent discrepancy lowerbounds of Muthukrishnan and Nikolov and derive a spectral lower bound using a characterization of discrepancy in terms of determinants

    Extremal Mechanisms for Local Differential Privacy

    Full text link
    Local differential privacy has recently surfaced as a strong measure of privacy in contexts where personal information remains private even from data analysts. Working in a setting where both the data providers and data analysts want to maximize the utility of statistical analyses performed on the released data, we study the fundamental trade-off between local differential privacy and utility. This trade-off is formulated as a constrained optimization problem: maximize utility subject to local differential privacy constraints. We introduce a combinatorial family of extremal privatization mechanisms, which we call staircase mechanisms, and show that it contains the optimal privatization mechanisms for a broad class of information theoretic utilities such as mutual information and ff-divergences. We further prove that for any utility function and any privacy level, solving the privacy-utility maximization problem is equivalent to solving a finite-dimensional linear program, the outcome of which is the optimal staircase mechanism. However, solving this linear program can be computationally expensive since it has a number of variables that is exponential in the size of the alphabet the data lives in. To account for this, we show that two simple privatization mechanisms, the binary and randomized response mechanisms, are universally optimal in the low and high privacy regimes, and well approximate the intermediate regime.Comment: 52 pages, 10 figures in JMLR 201

    Private Pareto Optimal Exchange

    Full text link
    We consider the problem of implementing an individually rational, asymptotically Pareto optimal allocation in a barter-exchange economy where agents are endowed with goods and have preferences over the goods of others, but may not use money as a medium of exchange. Because one of the most important instantiations of such economies is kidney exchange -- where the "input"to the problem consists of sensitive patient medical records -- we ask to what extent such exchanges can be carried out while providing formal privacy guarantees to the participants. We show that individually rational allocations cannot achieve any non-trivial approximation to Pareto optimality if carried out under the constraint of differential privacy -- or even the relaxation of \emph{joint} differential privacy, under which it is known that asymptotically optimal allocations can be computed in two-sided markets, where there is a distinction between buyers and sellers and we are concerned only with privacy of the buyers~\citep{Matching}. We therefore consider a further relaxation that we call \emph{marginal} differential privacy -- which promises, informally, that the privacy of every agent ii is protected from every other agent j≠ij \neq i so long as jj does not collude or share allocation information with other agents. We show that, under marginal differential privacy, it is possible to compute an individually rational and asymptotically Pareto optimal allocation in such exchange economies
    • …
    corecore