32,253 research outputs found

    Local unitary versus local Clifford equivalence of stabilizer and graph states

    Get PDF
    The equivalence of stabilizer states under local transformations is of fundamental interest in understanding properties and uses of entanglement. Two stabilizer states are equivalent under the usual stochastic local operations and classical communication criterion if and only if they are equivalent under local unitary (LU) operations. More surprisingly, under certain conditions, two LU equivalent stabilizer states are also equivalent under local Clifford (LC) operations, as was shown by Van den Nest et al. [Phys. Rev. \textbf{A71}, 062323]. Here, we broaden the class of stabilizer states for which LU equivalence implies LC equivalence (LULCLU\Leftrightarrow LC) to include all stabilizer states represented by graphs with neither cycles of length 3 nor 4. To compare our result with Van den Nest et al.'s, we show that any stabilizer state of distance δ=2\delta=2 is beyond their criterion. We then further prove that LULCLU\Leftrightarrow LC holds for a more general class of stabilizer states of δ=2\delta=2. We also explicitly construct graphs representing δ>2\delta>2 stabilizer states which are beyond their criterion: we identify all 58 graphs with up to 11 vertices and construct graphs with 2m12^m-1 (m4m\geq 4) vertices using quantum error correcting codes which have non-Clifford transversal gates.Comment: Revised version according to referee's comments. To appear in Physical Review

    Nested cycles in large triangulations and crossing-critical graphs

    Get PDF
    We show that every sufficiently large plane triangulation has a large collection of nested cycles that either are pairwise disjoint, or pairwise intersect in exactly one vertex, or pairwise intersect in exactly two vertices. We apply this result to show that for each fixed positive integer kk, there are only finitely many kk-crossing-critical simple graphs of average degree at least six. Combined with the recent constructions of crossing-critical graphs given by Bokal, this settles the question of for which numbers q>0q>0 there is an infinite family of kk-crossing-critical simple graphs of average degree qq

    Manifolds associated with (Z2)n(Z_2)^n-colored regular graphs

    Full text link
    In this article we describe a canonical way to expand a certain kind of (Z2)n+1(\mathbb Z_2)^{n+1}-colored regular graphs into closed nn-manifolds by adding cells determined by the edge-colorings inductively. We show that every closed combinatorial nn-manifold can be obtained in this way. When n3n\leq 3, we give simple equivalent conditions for a colored graph to admit an expansion. In addition, we show that if a (Z2)n+1(\mathbb Z_2)^{n+1}-colored regular graph admits an nn-skeletal expansion, then it is realizable as the moment graph of an (n+1)(n+1)-dimensional closed (Z2)n+1(\mathbb Z_2)^{n+1}-manifold.Comment: 20 pages with 9 figures, in AMS-LaTex, v4 added a new section on reconstructing a space with a (Z2)n(Z_2)^n-action for which its moment graph is a given colored grap

    The First Order Definability of Graphs with Separators via the Ehrenfeucht Game

    Get PDF
    We say that a first order formula Φ\Phi defines a graph GG if Φ\Phi is true on GG and false on every graph GG' non-isomorphic with GG. Let D(G)D(G) be the minimal quantifier rank of a such formula. We prove that, if GG is a tree of bounded degree or a Hamiltonian (equivalently, 2-connected) outerplanar graph, then D(G)=O(logn)D(G)=O(\log n), where nn denotes the order of GG. This bound is optimal up to a constant factor. If hh is a constant, for connected graphs with no minor KhK_h and degree O(n/logn)O(\sqrt n/\log n), we prove the bound D(G)=O(n)D(G)=O(\sqrt n). This result applies to planar graphs and, more generally, to graphs of bounded genus.Comment: 17 page
    corecore