453 research outputs found

    Resistively Shunted NbN/AlN/NbN Tunnel Junctions for Single Flux Quantum Circuits

    Get PDF
    AbstractWe have developed resistively shunted NbN junctions to realize superconducting single flux quantum circuits operating at 10K and/or high speed. The junctions consist of epitaxial NbN/AlN/NbN tunnel junctions and molybdenum (Mo) resistors fabricated on single-crystal MgO substrates. The junction qualities are systematically investigated in a wide range of critical current density (Jc). The gap voltage and the ratio of Rsg/RN were about 5.6mV and 11 for the junctions with the Jc of 10 kA/cm2, respectively. The overdamped Josephson junctions with parallel Mo resistors having a nominal sheet resistance showed non-hysteretic current-voltage characteristics for the junctions with Jc of 10 kA/cm2

    Collective quantum phase slips in multiple nanowire junctions

    Full text link
    Realization of robust coherent quantum phase slips represents a significant experimental challenge. Here we propose a new design consisting of multiple nanowire junctions to realize a phase-slip flux qubit. It admits good tunability provided by gate voltages applied on superconducting islands separating nanowire junctions. In addition, the gates and junctions can be identical or distinct to each other leading to symmetric and asymmetric setups. We find that the asymmetry can improve the performance of the proposed device, compared with the symmetric case. In particular, it can enhance the effective rate of collective quantum phase slips. Furthermore, we demonstrate how to couple two such devices via a mutual inductance. This is potentially useful for quantum gate operations. Our investigation on how symmetry in multiple nanowire junctions affects the device performance should be useful for the application of phase-slip flux qubits in quantum information processing and quantum metrology.Comment: 12 pages, 6 figure

    Towards understanding two-level-systems in amorphous solids -- Insights from quantum circuits

    Full text link
    Amorphous solids show surprisingly universal behaviour at low temperatures. The prevailing wisdom is that this can be explained by the existence of two-state defects within the material. The so-called standard tunneling model has become the established framework to explain these results, yet it still leaves the central question essentially unanswered -- what are these two-level defects? This question has recently taken on a new urgency with the rise of superconducting circuits in quantum computing, circuit quantum electrodynamics, magnetometry, electrometry and metrology. Superconducting circuits made from aluminium or niobium are fundamentally limited by losses due to two-level defects within the amorphous oxide layers encasing them. On the other hand, these circuits also provide a novel and effective method for studying the very defects which limit their operation. We can now go beyond ensemble measurements and probe individual defects -- observing the quantum nature of their dynamics and studying their formation, their behaviour as a function of applied field, strain, temperature and other properties. This article reviews the plethora of recent experimental results in this area and discusses the various theoretical models which have been used to describe the observations. In doing so, it summarises the current approaches to solving this fundamentally important problem in solid-state physics.Comment: 34 pages, 7 figures, 1 tabl

    High Density Fabrication Process for Single Flux Quantum Circuits

    Full text link
    We implemented, optimized and fully tested over multiple runs a superconducting Josephson junction fabrication process tailored for the integrated digital circuits that are used for control and readout of superconducting qubits operating at millikelvin temperatures. This process was optimized for highly energy efficient single flux quantum (ERSFQ) circuits with the critical currents reduced by factor of ~10 as compared to those operated at 4.2 K. Specifically, it implemented Josephson junctions with 10 uA unit critical current fabricated with a 10 uA/um2 critical current density. In order to circumvent the substantial size increase of the SFQ circuit inductors, we employed a NbN high kinetic inductance layer (HKIL) with a 8.5 pH/sq sheet inductance. Similarly, to maintain the small size of junction resistive shunts, we used a non-superconducting PdAu alloy with a 4.0 ohm/sq sheet resistance. For integration with quantum circuits in a multi-chip module, 5 and 10 um height bump processes were also optimized. To keep the fabrication process in check, we developed and thoroughly tested a comprehensive Process Control Monitor chip set.Comment: 10 pages, 5 figures, 1 tabl
    • …
    corecore