625 research outputs found

    Evaluation of accuracy of computed topographic- based navigation assisted pedicle screw placement in thoracolumbar spine fracture

    Get PDF
    Background: Although pedicle screw fixation is a well-established technique for the thoracolumbar spine fracture, but the screw placement in the thoracolumbar spine is more challenging because more complex 3D anatomy. Incorrect placement of pedicle screws may lead to neurovascular injury, so the accuracy of pedicular screw placement is very crucial task. CT based navigation devices may allow surgeons a safe and more accurate method for placing pedicle screws with no radiation exposure intraoperative.Method: A Computed topographic (CT) based image guided navigation system was used for pedicle screw insertion. The accuracy of the pedicle screw placement was analyzed According to ‘Learch and Wiesners classification’ and ‘Heary classification’ for pedicle screw malplacement with a review of postoperative radiograph and CT scan image.Result: Under the guidance of CT based navigation 52 pedicle screws were inserted, out of which 02 pedicular screw shows lateral pedicle cortex breach. Conclusion: The accuracy of pedicle screw placement is crucial for thoracolumbar spine fracture fixation. The placement of pedicle screws can be done more accurately and safely with the aid of a CT-based navigation system. Furthermore, this opens the possibility for surgeons to reduce radiationexposure by eliminating the need for intra - operative fluoroscopy

    Upper Lumbar Pedicle Screw Insertion Using Three-Dimensional Fluoroscopy Navigation:Assessment of Clinical Accuracy

    Get PDF
    We used a navigation system to insert 128 pedicle screws into 69 vertebrae (L1 to L3) of 49 consecutive patients. We assessed the pedicle isthmic width and the permission angle for pedicle screw insertion. The permission angle is the angle defined by the greatest medial and lateral trajectories allowable when placing the screw through the center of the pedicle. The rate of narrow-width pedicles (isthmic width less than 5mm) was 5 of 60 pedicles (8%) at L1, 4 of 60 pedicles (7%) at L2, and none (0%) at L3, L4 and L5. The rate of narrow-angle pedicles (a permission angle less than 15 degrees) was 21 of 60 pedicles (35%) at L1, 7 of 60 (12%) at L2, 3 of 60 (5%) at L3, and none (0%) at L4 and L5. Of 128 pedicle screws inserted into 69 vertebrae from L1 to L3, 125 (97.7%) were classified as Grade 1 (no pedicle perforation). In general, the upper lumbar vertebrae have more narrow-width and -angle pedicles. However, we could reduce the rate of pedicle screw misplacement in upper lumbar vertebra using a three-dimensional fluoroscopy and navigation system

    Fluoroscopy-based navigation system in spine surgery

    Full text link
    The variability in width, height, and spatial orientation of a spinal pedicle makes pedicle screw insertion a delicate operation. The aim of the current paper is to describe a computer-assisted surgical navigation system based on fluoroscopic X-ray image calibration and three-dimensional optical localizers in order to reduce radiation exposure while increasing accuracy and reliability of the surgical procedure for pedicle screw insertion. Instrumentation using transpedicular screw fixation was performed: in a first group, a conventional surgical procedure was carried out with 26 patients (138 screws); in a second group, a navigated surgical procedure (virtual fluoroscopy) was performed with 26 patients (140 screws). Evaluation of screw placement in every case was done by using plain X-rays and post-operative computer tomography scan. A 5 per cent cortex penetration (7 of 140 pedicle screws) occurred for the computer-assisted group. A 13 per cent penetration (18 of 138 pedicle screws) occurred for the non computer-assisted group. The radiation running time for each vertebra level (two screws) reached 3.5 s on average in the computer-assisted group and 11.5 s on average in the non computer-assisted group. The operative time for two screws on the same vertebra level reaches 10 min on average in the non computer-assisted group and 11.9 min on average in the computer-assisted group. The fluoroscopy-based (two-dimensional) navigation system for pedicle screw insertion is a safe and reliable procedure for surgery in the lower thoracic and lumbar spine

    Clinical Accuracy of Three-Dimensional Fluoroscopy (IsoC-3D)-Assisted Upper Thoracic Pedicle Screw Insertion

    Get PDF
    Correct screw placement is especially difficult in the upper thoracic vertebrae. At the cervicothoracic junction (C7-T2), problems can arise because of the narrowness of the pedicle and the difficulty of using a lateral image intensifier there. Other upper thoracic vertebrae (T3-6) pose a problem for screw insertion also because of the narrower pedicle. We inserted 154 pedicle screws into 78 vertebrae (C7 to T6) in 38 patients. Screws were placed using intraoperative data acquisition by an isocentric C-arm fluoroscope (Siremobile Iso-C3D) and computer navigation. Out of 90 pedicle screws inserted into 45 vertebrae between C7 and T2, 87 of the 90 (96.7%) screws were classified as grade 1 (no perforation). Of 64 pedicle screws inserted into 33 vertebrae between T3 and T6, 61 of 64 (95.3%) screws were classified as grade 1. In this study, we reduced pedicle screw misplacement at the level of the C7 and upper thoracic (T1-6) vertebrae using the three-dimensional fluoroscopy navigation system

    Recent trends, technical concepts and components of computer-assisted orthopedic surgery systems: A comprehensive review

    Get PDF
    Computer-assisted orthopedic surgery (CAOS) systems have become one of the most important and challenging types of system in clinical orthopedics, as they enable precise treatment of musculoskeletal diseases, employing modern clinical navigation systems and surgical tools. This paper brings a comprehensive review of recent trends and possibilities of CAOS systems. There are three types of the surgical planning systems, including: systems based on the volumetric images (computer tomography (CT), magnetic resonance imaging (MRI) or ultrasound images), further systems utilize either 2D or 3D fluoroscopic images, and the last one utilizes the kinetic information about the joints and morphological information about the target bones. This complex review is focused on three fundamental aspects of CAOS systems: their essential components, types of CAOS systems, and mechanical tools used in CAOS systems. In this review, we also outline the possibilities for using ultrasound computer-assisted orthopedic surgery (UCAOS) systems as an alternative to conventionally used CAOS systems.Web of Science1923art. no. 519

    Segmental Pedicle Screw Fixation for a Scoliosis Patient with Post-laminectomy and Post-irradiation Thoracic Kyphoscoliosis of Spinal Astrocytoma

    Get PDF
    Spinal deformity is an important clinical manifestation after surgery for spinal cord tumors. One-third of patients who receive laminectomies and irradiation of the spinal column develop scoliosis, kyphosis, or kyphoscoliosis. Recent reports indicate good results after scoliosis surgery using segmental pedicle screws and a navigation system, but these reported studies have not included surgery for post-laminectomy kyphosis. Hooks and wires are ineffective in such patients who undergo laminectomy, and there are also high perioperative risks with insertion of pedicle screws because landmarks have been lost. Here, we report on the 5-year follow-up of a 13-year-old male patient with post-laminectomy and post-irradiation thoracic kyphoscoliosis after surgical treatment of spinal astrocytoma. Posterior segmental pedicle screw fixation was performed safely using a computer-assisted technique. The authors present the first case report for treatment of this condition using a navigation system

    Effect of O-arm for spinal injury

    Get PDF
    Purpose : To compare the effectiveness of O-arm navigation with that of conventional fluoroscopic guidance in corrective posterior fixation for cervical spinal injury. Methods : This retrospective comparative study involved 11 consecutive patients who underwent corrective posterior fixation using O-arm navigation or conventional fluoroscopy for cervical spinal injury between February 2016 and May 2021. Patient-specific characteristics (age and sex), number of screws, number of pedicle screws, accuracy of pedicle screw insertion, number of vertebral bodies fixed, operating time, and length of hospital stay were analyzed using the t-test. A P-value 0.05). Conclusion : O-arm navigation can improve the accuracy of cervical pedicle screw insertion. Its introduction could expand the indications for use of pedicle screws in posterior fixation of cervical spinal injury beyond those that are possible using conventional fluoroscopy

    Computer-assisted Minimally Invasive Posterior Lumbar Interbody Fusion without C-arm Fluoroscopy

    Get PDF
    Computer-assisted spinal surgery is becoming more common; however, this is the first technical report to describe the technique of minimally invasive spinal posterior lumbar interbody fusion (MIS-PLIF) without using C-arm fluoroscopy. The authors report 2 years of follow-up of a 49-year-old female patient with L4 degenerative spondylolisthesis. The patient suffered from low back pain and intermittent claudication for more than 6 years. The authors performed computer-assisted MIS-PLIF without C-arm fluoroscopy. Instead, O-arm® navigation, the use of which reduces radiation exposure to patients as well as others in the operating room, was employed. Surgery was successful, and correct lumbar alignment was maintained. She had neither neurological deficits nor low back pain at her 12-month final follow-up. In conclusion, computer-assisted MIS-PLIF without C-arm fluoroscopy is a useful technique that reduces radiation exposure to the surgeon and operating room staff
    corecore