9,287 research outputs found

    An Adaptive Mobile Robot with Gaussian type on Fuzzy Logic Type 2

    Get PDF
    This is an adaptive Mobile Robot Navigation project based on Fuzzy Logic Type 2. The goal of this study is to investigate the performance of a mobile robot in an environment (navigation). As a result, this project will be emphasized on the outcomes of simulation for the mobile robot in navigation. The background for the simulation will be based on the obstacle avoidance. In brief, when the fuzzy controller detects any potential obstacle nearer or on the way for the robot going to the goal point, the robot will be able to avoid it. In navigation, the surrounding environment for the robot and the position of the obstacle should be understood ahead of time. The robot is required to navigate to its destination by avoiding the obstacle. In such, the robot navigation in simulations can be estimated using prior information of the coordinates from the beginning point, the goal point, and the obstacle position. Thus, in this research, the cost function method was implemented to evaluate and estimate the robot's surroundings in a simulated environment. Consequently, the objective of the project is to design a mobile robot in navigation using the fuzzy logic system and to develop the lower state estimation error for both estimated and measured simulation value. By using the cost function and fuzzy logic, the mobile robot navigation was proved as the result shows that the robot was able to avoid the obstacle on its way toward the goal point. Furthermore, the graph shows only a slight difference occurred between the measured and estimated values, indicating that the project was implemented as required

    Design and analysis of Intelligent Navigational controller for Mobile Robot

    Get PDF
    Since last several years requirement graph for autonomous mobile robots according to its virtual application has always been an upward one. Smother and faster mobile robots navigation with multiple function are the necessity of the day. This research is based on navigation system as well as kinematics model analysis for autonomous mobile robot in known environments. To execute and attain introductory robotic behaviour inside environments(e.g. obstacle avoidance, wall or edge following and target seeking) robot uses method of perception, sensor integration and fusion. With the help of these sensors robot creates its collision free path and analyse an environmental map time to time. Mobile robot navigation in an unfamiliar environment can be successfully studied here using online sensor fusion and integration. Various AI algorithm are used to describe overall procedure of mobilerobot navigation and its path planning problem. To design suitable controller that create collision free path are achieved by the combined study of kinematics analysis of motion as well as an artificial intelligent technique. In fuzzy logic approach, a set of linguistic fuzzy rules are generated for navigation of mobile robot. An expert controller has been developed for the navigation in various condition of environment using these fuzzy rules. Further, type-2 fuzzy is employed to simplify and clarify the developed control algorithm more accurately due to fuzzy logic limitations. In addition, recurrent neural network (RNN) methodology has been analysed for robot navigation. Which helps the model at the time of learning stage. The robustness of controller has been checked on Webots simulation platform. Simulation results and performance of the controller using Webots platform show that, the mobile robot is capable for avoiding obstacles and reaching the termination point in efficient manner

    A layered fuzzy logic controller for nonholonomic car-like robot

    Get PDF
    A system for real time navigation of a nonholonomic car-like robot in a dynamic environment consists of two layers is described: a Sugeno-type fuzzy motion planner; and a modified proportional navigation based fuzzy controller. The system philosophy is inspired by human routing when moving between obstacles based on visual information including right and left views to identify the next step to the goal. A Sugeno-type fuzzy motion planner of four inputs one output is introduced to give a clear direction to the robot controller. The second stage is a modified proportional navigation based fuzzy controller based on the proportional navigation guidance law and able to optimize the robot's behavior in real time, i.e. to avoid stationary and moving obstacles in its local environment obeying kinematics constraints. The system has an intelligent combination of two behaviors to cope with obstacle avoidance as well as approaching a target using a proportional navigation path. The system was simulated and tested on different environments with various obstacle distributions. The simulation reveals that the system gives good results for various simple environments

    Adaptive neuro-fuzzy technique for autonomous ground vehicle navigation

    Get PDF
    This article proposes an adaptive neuro-fuzzy inference system (ANFIS) for solving navigation problems of an autonomous ground vehicle (AGV). The system consists of four ANFIS controllers; two of which are used for regulating both the left and right angular velocities of the AGV in order to reach the target position; and other two ANFIS controllers are used for optimal heading adjustment in order to avoid obstacles. The two velocity controllers receive three sensor inputs: front distance (FD); right distance (RD) and left distance (LD) for the low-level motion control. Two heading controllers deploy the angle difference (AD) between the heading of AGV and the angle to the target to choose the optimal direction. The simulation experiments have been carried out under two different scenarios to investigate the feasibility of the proposed ANFIS technique. The simulation results have been presented using MATLAB software package; showing that ANFIS is capable of performing the navigation and path planning task safely and efficiently in a workspace populated with static obstacles

    A reconfigurable hybrid intelligent system for robot navigation

    Get PDF
    Soft computing has come of age to o er us a wide array of powerful and e cient algorithms that independently matured and in uenced our approach to solving problems in robotics, search and optimisation. The steady progress of technology, however, induced a ux of new real-world applications that demand for more robust and adaptive computational paradigms, tailored speci cally for the problem domain. This gave rise to hybrid intelligent systems, and to name a few of the successful ones, we have the integration of fuzzy logic, genetic algorithms and neural networks. As noted in the literature, they are signi cantly more powerful than individual algorithms, and therefore have been the subject of research activities in the past decades. There are problems, however, that have not succumbed to traditional hybridisation approaches, pushing the limits of current intelligent systems design, questioning their solutions of a guarantee of optimality, real-time execution and self-calibration. This work presents an improved hybrid solution to the problem of integrated dynamic target pursuit and obstacle avoidance, comprising of a cascade of fuzzy logic systems, genetic algorithm, the A* search algorithm and the Voronoi diagram generation algorithm

    Realization of reactive control for multi purpose mobile agents

    Get PDF
    Mobile robots are built for different purposes, have different physical size, shape, mechanics and electronics. They are required to work in real-time, realize more than one goal simultaneously, hence to communicate and cooperate with other agents. The approach proposed in this paper for mobile robot control is reactive and has layered structure that supports multi sensor perception. Potential field method is implemented for both obstacle avoidance and goal tracking. However imaginary forces of the obstacles and of the goal point are separately treated, and then resulting behaviors are fused with the help of the geometry. Proposed control is tested on simulations where different scenarios are studied. Results have confirmed the high performance of the method

    An enhanced classifier system for autonomous robot navigation in dynamic environments

    Get PDF
    In many cases, a real robot application requires the navigation in dynamic environments. The navigation problem involves two main tasks: to avoid obstacles and to reach a goal. Generally, this problem could be faced considering reactions and sequences of actions. For solving the navigation problem a complete controller, including actions and reactions, is needed. Machine learning techniques has been applied to learn these controllers. Classifier Systems (CS) have proven their ability of continuos learning in these domains. However, CS have some problems in reactive systems. In this paper, a modified CS is proposed to overcome these problems. Two special mechanisms are included in the developed CS to allow the learning of both reactions and sequences of actions. The learning process has been divided in two main tasks: first, the discrimination between a predefined set of rules and second, the discovery of new rules to obtain a successful operation in dynamic environments. Different experiments have been carried out using a mini-robot Khepera to find a generalised solution. The results show the ability of the system to continuous learning and adaptation to new situations.Publicad

    Mobile Robot Sensor Fusion with Fuzzy ARTMAP

    Full text link
    The raw sensory input available to a mobile robot suffers from a variety of shortcomings. Sensor fusion can yield a percept more veridical than is available from any single sensor input. In this project, the fuzzy ARTMAP neural network is used to fuse sonar and visual sonar on a B14 mobile robot. The neural network learns to associate specific sensory inputs with a corresponding distance metric. Once trained, the network yields predictions of range to obstacles that are more accurate than those provided by either sensor type alone. This improvement in accuracy holds across all distances and angles of approach tested.Defense Advanced Research Projects Agency, Office of Naval Research, Navy Research Laboratory (ONR-00014-96-1-0772, ONR-00014-95-1-0409, ONR-00014-95-0657
    corecore