1,125 research outputs found

    Commodity Computing Clusters at Goddard Space Flight Center

    Get PDF
    The purpose of commodity cluster computing is to utilize large numbers of readily available computing components for parallel computing to obtaining the greatest amount of useful computations for the least cost. The issue of the cost of a computational resource is key to computational science and data processing at GSFC as it is at most other places, the difference being that the need at GSFC far exceeds any expectation of meeting that need. Therefore, Goddard scientists need as much computing resources that are available for the provided funds. This is exemplified in the following brief history of low-cost high-performance computing at GSFC

    Investigation of a Space Delta Technology Facility (SDTF) for Spacelab

    Get PDF
    The Space Data Technology Facility (SDTF) would have the role of supporting a wide range of data technology related demonstrations which might be performed on Spacelab. The SDTF design is incorporated primarily in one single width standardized Spacelab rack. It consists of various display, control and data handling components together with interfaces with the demonstration-specific equipment and Spacelab. To arrive at this design a wide range of data related technologies and potential demonstrations were also investigated. One demonstration concerned with online image rectification and registration was developed in some depth

    Influence-based motion planning algorithms for games

    Get PDF
    In games, motion planning has to do with the motion of non-player characters (NPCs) from one place to another in the game world. In today’s video games there are two major approaches for motion planning, namely, path-finding and influence fields. Path-finding algorithms deal with the problem of finding a path in a weighted search graph, whose nodes represent locations of a game world, and in which the connections among nodes (edges) have an associated cost/weight. In video games, the most employed pathfinders are A* and its variants, namely, Dijkstra’s algorithm and best-first search. As further will be addressed in detail, the former pathfinders cannot simulate or mimic the natural movement of humans, which is usually without discontinuities, i.e., smooth, even when there are sudden changes in direction. Additionally, there is another problem with the former pathfinders, namely, their lack of adaptivity when changes to the environment occur. Therefore, such pathfinders are not adaptive, i.e., they cannot handle with search graph modifications during path search as a consequence of an event that happened in the game (e.g., when a bridge connecting two graph nodes is destroyed by a missile). On the other hand, influence fields are a motion planning technique that does not suffer from the two problems above, i.e., they can provide smooth human-like movement and are adaptive. As seen further ahead, we will resort to a differentiable real function to represent the influence field associated with a game map as a summation of functions equally differentiable, each associated to a repeller or an attractor. The differentiability ensures that there are no abrupt changes in the influence field, consequently, the movement of any NPC will be smooth, regardless if the NPC walks in the game world in the growing sense of the function or not. Thus, it is enough to have a spline curve that interpolates the path nodes to mimic the smooth human-like movement. Moreover, given the nature of the differentiable real functions that represent an influence field, the removal or addition of a repeller/attractor (as the result of the destruction or the construction of a bridge) does not alter the differentiability of the global function associated with the map of a game. That is to say that, an influence field is adaptive, in that it adapts to changes in the virtual world during the gameplay. In spite of being able to solve the two problems of pathfinders, an influence field may still have local extrema, which, if reached, will prevent an NPC from fleeing from that location. The local extremum problem never occurs in pathfinders because the goal node is the sole global minimum of the cost function. Therefore, by conjugating the cost function with the influence function, the NPC will never be detained at any local extremum of the influence function, because the minimization of the cost function ensures that it will always walk in the direction of the goal node. That is, the conjugation between pathfinders and influence fields results in movement planning algorithms which, simultaneously, solve the problems of pathfinders and influence fields. As will be demonstrated throughout this thesis, it is possible to combine influence fields and A*, Dijkstra’s, and best-first search algorithms, so that we get hybrid algorithms that are adaptive. Besides, these algorithms can generate smooth paths that resemble the ones traveled by human beings, though path smoothness is not the main focus of this thesis. Nevertheless, it is not always possible to perform this conjugation between influence fields and pathfinders; an example of such a pathfinder is the fringe search algorithm, as well as the new pathfinder which is proposed in this thesis, designated as best neighbor first search.Em jogos de vídeo, o planeamento de movimento tem que ver com o movimento de NPCs (“Non-Player Characters”, do inglês) de um lugar para outro do mundo virtual de um jogo. Existem duas abordagens principais para o planeamento de movimento, nomeadamente descoberta de caminhos e campos de influência. Os algoritmos de descoberta de caminhos lidam com o problema de encontrar um caminho num grafo de pesquisa pesado, cujos nós representam localizações de um mapa de um jogo, e cujas ligações (arestas) entre nós têm um custo/peso associado. Os algoritmos de descoberta de caminhos mais utilizados em jogos são o A* e as suas variantes, nomeadamente, o algoritmo de Dijkstra e o algoritmo de pesquisa do melhor primeiro (“best-first search”, do inglês). Como se verá mais adiante, os algoritmos de descoberta de caminhos referidos não permitem simular ou imitar o movimento natural dos seres humanos, que geralmente não possui descontinuidades, i.e., o movimento é suave mesmo quando há mudanças repentinas de direcção. A juntar a este problema, existe um outro que afeta os algoritmos de descoberta de caminhos acima referidos, que tem que ver com a falta de adaptatividade destes algoritmos face a alterações ao mapa de um jogo. Ou seja, estes algoritmos não são adaptativos, pelo que não permitem lidar com alterações ao grafo durante a pesquisa de um caminho em resultado de algum evento ocorrido no jogo (e.g., uma ponte que ligava dois nós de um grafo foi destruída por um míssil). Por outro lado, os campos de influência são uma técnica de planeamento de movimento que não padece dos dois problemas acima referidos, i.e., os campos possibilitam um movimento suave semelhante ao realizado pelo ser humano e são adaptativos. Como se verá mais adiante, iremos recorrer a uma função real diferenciável para representar o campo de influência associado a um mapa de um jogo como um somatório de funções igualmente diferenciáveis, em que cada função está associada a um repulsor ou a um atractor. A diferenciabilidade garante que não existem alterações abruptas ao campo de influência; consequentemente, o movimento de qualquer NPC será suave, independentemente de o NPC caminhar no mapa de um jogo no sentido crescente ou no sentido decrescente da função. Assim, basta ter uma curva spline que interpola os nós do caminho de forma a simular o movimento suave de um ser humano. Além disso, dada a natureza das funções reais diferenciáveis que representam um campo de influência, a remoção ou adição de um repulsor/atractor (como resultado da destruição ou construção de uma ponte) não altera a diferenciabilidade da função global associada ao mapa de um jogo. Ou seja, um campo de influência é adaptativo, na medida em que se adapta a alterações que ocorram num mundo virtual durante uma sessão de jogo. Apesar de ser capaz de resolver os dois problemas dos algoritmos de descoberta de caminhos, um campo de influência ainda pode ter extremos locais, que, se alcançados, impedirão um NPC de fugir desse local. O problema do extremo local nunca ocorre nos algoritmos de descoberta de caminhos porque o nó de destino é o único mínimo global da função de custo. Portanto, ao conjugar a função de custo com a função de influência, o NPC nunca será retido num qualquer extremo local da função de influência, porque a minimização da função de custo garante que ele caminhe sempre na direção do nó de destino. Ou seja, a conjugação entre algoritmos de descoberta de caminhos e campos de influência tem como resultado algoritmos de planeamento de movimento que resolvem em simultâneo os problemas dos algoritmos de descoberta de caminhos e de campos de influência. Como será demonstrado ao longo desta tese, é possível combinar campos de influência e o algoritmo A*, o algoritmo de Dijkstra, e o algoritmo da pesquisa pelo melhor primeiro, de modo a obter algoritmos híbridos que são adaptativos. Além disso, esses algoritmos podem gerar caminhos suaves que se assemelham aos que são efetuados por seres humanos, embora a suavidade de caminhos não seja o foco principal desta tese. No entanto, nem sempre é possível realizar essa conjugação entre os campos de influência e os algoritmos de descoberta de caminhos; um exemplo é o algoritmo de pesquisa na franja (“fringe search”, do inglês), bem como o novo algoritmo de pesquisa proposto nesta tese, que se designa por algoritmo de pesquisa pelo melhor vizinho primeiro (“best neighbor first search”, do inglês)

    CHORUS Deliverable 2.2: Second report - identification of multi-disciplinary key issues for gap analysis toward EU multimedia search engines roadmap

    Get PDF
    After addressing the state-of-the-art during the first year of Chorus and establishing the existing landscape in multimedia search engines, we have identified and analyzed gaps within European research effort during our second year. In this period we focused on three directions, notably technological issues, user-centred issues and use-cases and socio- economic and legal aspects. These were assessed by two central studies: firstly, a concerted vision of functional breakdown of generic multimedia search engine, and secondly, a representative use-cases descriptions with the related discussion on requirement for technological challenges. Both studies have been carried out in cooperation and consultation with the community at large through EC concertation meetings (multimedia search engines cluster), several meetings with our Think-Tank, presentations in international conferences, and surveys addressed to EU projects coordinators as well as National initiatives coordinators. Based on the obtained feedback we identified two types of gaps, namely core technological gaps that involve research challenges, and “enablers”, which are not necessarily technical research challenges, but have impact on innovation progress. New socio-economic trends are presented as well as emerging legal challenges

    Event-Driven Technologies for Reactive Motion Planning: Neuromorphic Stereo Vision and Robot Path Planning and Their Application on Parallel Hardware

    Get PDF
    Die Robotik wird immer mehr zu einem Schlüsselfaktor des technischen Aufschwungs. Trotz beeindruckender Fortschritte in den letzten Jahrzehnten, übertreffen Gehirne von Säugetieren in den Bereichen Sehen und Bewegungsplanung noch immer selbst die leistungsfähigsten Maschinen. Industrieroboter sind sehr schnell und präzise, aber ihre Planungsalgorithmen sind in hochdynamischen Umgebungen, wie sie für die Mensch-Roboter-Kollaboration (MRK) erforderlich sind, nicht leistungsfähig genug. Ohne schnelle und adaptive Bewegungsplanung kann sichere MRK nicht garantiert werden. Neuromorphe Technologien, einschließlich visueller Sensoren und Hardware-Chips, arbeiten asynchron und verarbeiten so raum-zeitliche Informationen sehr effizient. Insbesondere ereignisbasierte visuelle Sensoren sind konventionellen, synchronen Kameras bei vielen Anwendungen bereits überlegen. Daher haben ereignisbasierte Methoden ein großes Potenzial, schnellere und energieeffizientere Algorithmen zur Bewegungssteuerung in der MRK zu ermöglichen. In dieser Arbeit wird ein Ansatz zur flexiblen reaktiven Bewegungssteuerung eines Roboterarms vorgestellt. Dabei wird die Exterozeption durch ereignisbasiertes Stereosehen erreicht und die Pfadplanung ist in einer neuronalen Repräsentation des Konfigurationsraums implementiert. Die Multiview-3D-Rekonstruktion wird durch eine qualitative Analyse in Simulation evaluiert und auf ein Stereo-System ereignisbasierter Kameras übertragen. Zur Evaluierung der reaktiven kollisionsfreien Online-Planung wird ein Demonstrator mit einem industriellen Roboter genutzt. Dieser wird auch für eine vergleichende Studie zu sample-basierten Planern verwendet. Ergänzt wird dies durch einen Benchmark von parallelen Hardwarelösungen wozu als Testszenario Bahnplanung in der Robotik gewählt wurde. Die Ergebnisse zeigen, dass die vorgeschlagenen neuronalen Lösungen einen effektiven Weg zur Realisierung einer Robotersteuerung für dynamische Szenarien darstellen. Diese Arbeit schafft eine Grundlage für neuronale Lösungen bei adaptiven Fertigungsprozesse, auch in Zusammenarbeit mit dem Menschen, ohne Einbußen bei Geschwindigkeit und Sicherheit. Damit ebnet sie den Weg für die Integration von dem Gehirn nachempfundener Hardware und Algorithmen in die Industrierobotik und MRK

    Rough Seas Ahead: Confronting Property Doctrines to Jumpstart Wave Energy

    Get PDF
    corecore