239 research outputs found

    Control of Real Mobile Robot Using Artificial Intelligence Technique

    Get PDF
    An eventual objective of mobile robotics research is to bestow the robot with high cerebral skill, of which navigation in an unfamiliar environment can be succeeded by using on‐line sensory information, which is essentially starved of humanoid intermediation. This research emphases on mechanical design of real mobile robot, its kinematic & dynamic model analysis and selection of AI technique based on perception, cognition, sensor fusion, path scheduling and analysis, which has to be implemented in robot for achieving integration of different preliminary robotic behaviors (e.g. obstacle avoidance, wall and edge following, escaping dead end and target seeking). Navigational paths as well as time taken during navigation by the mobile robot can be expressed as an optimization problem and thus can be analyzed and solved using AI techniques. The optimization of path as well as time taken is based on the kinematic stability and the intelligence of the robot controller. A set of linguistic fuzzy rules are developed to implement expert knowledge under various situations. Both of Mamdani and Takagi-Sugeno fuzzy model are employed in control algorithm for experimental purpose. Neural network has also been used to enhance and optimize the outcome of controller, e.g. by introducing a learning ability. The cohesive framework combining both fuzzy inference system and neural network enabled mobile robot to generate reasonable trajectories towards the target. An authenticity checking has been done by performing simulation as well as experimental results which showed that the mobile robot is capable of avoiding stationary obstacles, escaping traps, and reaching the goal efficiently

    Recent Advances in Multi Robot Systems

    Get PDF
    To design a team of robots which is able to perform given tasks is a great concern of many members of robotics community. There are many problems left to be solved in order to have the fully functional robot team. Robotics community is trying hard to solve such problems (navigation, task allocation, communication, adaptation, control, ...). This book represents the contributions of the top researchers in this field and will serve as a valuable tool for professionals in this interdisciplinary field. It is focused on the challenging issues of team architectures, vehicle learning and adaptation, heterogeneous group control and cooperation, task selection, dynamic autonomy, mixed initiative, and human and robot team interaction. The book consists of 16 chapters introducing both basic research and advanced developments. Topics covered include kinematics, dynamic analysis, accuracy, optimization design, modelling, simulation and control of multi robot systems

    Underwater Vehicles

    Get PDF
    For the latest twenty to thirty years, a significant number of AUVs has been created for the solving of wide spectrum of scientific and applied tasks of ocean development and research. For the short time period the AUVs have shown the efficiency at performance of complex search and inspection works and opened a number of new important applications. Initially the information about AUVs had mainly review-advertising character but now more attention is paid to practical achievements, problems and systems technologies. AUVs are losing their prototype status and have become a fully operational, reliable and effective tool and modern multi-purpose AUVs represent the new class of underwater robotic objects with inherent tasks and practical applications, particular features of technology, systems structure and functional properties

    Mobile Robots Navigation

    Get PDF
    Mobile robots navigation includes different interrelated activities: (i) perception, as obtaining and interpreting sensory information; (ii) exploration, as the strategy that guides the robot to select the next direction to go; (iii) mapping, involving the construction of a spatial representation by using the sensory information perceived; (iv) localization, as the strategy to estimate the robot position within the spatial map; (v) path planning, as the strategy to find a path towards a goal location being optimal or not; and (vi) path execution, where motor actions are determined and adapted to environmental changes. The book addresses those activities by integrating results from the research work of several authors all over the world. Research cases are documented in 32 chapters organized within 7 categories next described

    Conference on Intelligent Robotics in Field, Factory, Service, and Space (CIRFFSS 1994), volume 1

    Get PDF
    The AIAA/NASA Conference on Intelligent Robotics in Field, Factory, Service, and Space (CIRFFSS '94) was originally proposed because of the strong belief that America's problems of global economic competitiveness and job creation and preservation can partly be solved by the use of intelligent robotics, which are also required for human space exploration missions. Individual sessions addressed nuclear industry, agile manufacturing, security/building monitoring, on-orbit applications, vision and sensing technologies, situated control and low-level control, robotic systems architecture, environmental restoration and waste management, robotic remanufacturing, and healthcare applications

    Design and Development of an Automated Mobile Manipulator for Industrial Applications

    Get PDF
    This thesis presents the modeling, control and coordination of an automated mobile manipulator. A mobile manipulator in this investigation consists of a robotic manipulator and a mobile platform resulting in a hybrid mechanism that includes a mobile platform for locomotion and a manipulator arm for manipulation. The structural complexity of a mobile manipulator is the main challenging issue because it includes several problems like adapting a manipulator and a redundancy mobile platform at non-holonomic constraints. The objective of the thesis is to fabricate an automated mobile manipulator and develop control algorithms that effectively coordinate the arm manipulation and mobility of mobile platform. The research work starts with deriving the motion equations of mobile manipulators. The derivation introduced here makes use of motion equations of robot manipulators and mobile platforms separately, and then integrated them as one entity. The kinematic analysis is performed in two ways namely forward & inverse kinematics. The motion analysis is performed for various WMPs such as, Omnidirectional WMP, Differential three WMP, Three wheeled omni-steer WMP, Tricycle WMP and Two steer WMP. From the obtained motion analysis results, Differential three WMP is chosen as the mobile platform for the developed mobile manipulator. Later motion analysis is carried out for 4-axis articulated arm. Danvit-Hartenberg representation is implemented to perform forward kinematic analysis. Because of this representation, one can easily understand the kinematic equation for a robotic arm. From the obtained arm equation, Inverse kinematic model for the 4-axis robotic manipulator is developed. Motion planning of an intelligent mobile robot is one of the most vital issues in the field of robotics, which includes the generation of optimal collision free trajectories within its work space and finally reaches its target position. For solving this problem, two evolutionary algorithms namely Particle Swarm Optimization (PSO) and Artificial Immune System (AIS) are introduced to move the mobile platform in intelligent manner. The developed algorithms are effective in avoiding obstacles, trap situations and generating optimal paths within its unknown environments. Once the robot reaches its goal (within the work space of the manipulator), the manipulator will generate its trajectories according to task assigned by the user. Simulation analyses are performed using MATLAB-2010 in order to validate the feasibility of the developed methodologies in various unknown environments. Additionally, experiments are carried out on an automated mobile manipulator. ATmega16 Microcontrollers are used to enable the entire robot system movement in desired trajectories by means of robot interface application program. The control program is developed in robot software (Keil) to control the mobile manipulator servomotors via a serial connection through a personal computer. To support the proposed control algorithms both simulation and experimental results are presented. Moreover, validation of the developed methodologies has been made with the ER-400 mobile platform

    Computational intelligence approaches to robotics, automation, and control [Volume guest editors]

    Get PDF
    No abstract available

    The emergence of active perception - seeking conceptual foundations

    Get PDF
    The aim of this thesis is to explain the emergence of active perception. It takes an interdisciplinary approach, by providing the necessary conceptual foundations for active perception research - the key notions that bridge the conceptual gaps remaining in understanding emergent behaviours of active perception in the context of robotic implementations. On the one hand, the autonomous agent approach to mobile robotics claims that perception is active. On the other hand, while explanations of emergence have been extensively pursued in Artificial Life, these explanations have not yet successfully accounted for active perception.The main question dealt with in this thesis is how active perception systems, as behaviour -based autonomous systems, are capable of providing relatively optimal perceptual guidance in response to environmental challenges, which are somewhat unpredictable. The answer is: task -level emergence on grounds of complicatedly combined computational strategies, but this notion needs further explanation.To study the computational strategies undertaken in active perception re- search, the thesis surveys twelve implementations. On the basis of the surveyed implementations, discussions in this thesis show that the perceptual task executed in support of bodily actions does not arise from the intentionality of a homuncu- lus, but is identified automatically on the basis of the dynamic small mod- ules of particular robotic architectures. The identified tasks are accomplished by quasi -functional modules and quasi- action modules, which maintain transformations of perceptual inputs, compute critical variables, and provide guidance of sensory -motor movements to the most relevant positions for fetching further needed information. Given the nature of these modules, active perception emerges in a different fashion from the global behaviour seen in other autonomous agent research.The quasi- functional modules and quasi- action modules cooperate by estimating the internal cohesion of various sources of information in support of the envisaged task. Specifically, such modules basically reflect various computational facilities for a species to single out the most important characteristics of its ecological niche. These facilities help to achieve internal cohesion, by maintaining a stepwise evaluation over the previously computed information, the required task, and the most relevant features presented in the environment.Apart from the above exposition of active perception, the process of task - level emergence is understood with certain principles extracted from four models of life origin. First, the fundamental structure of active perception is identified as the stepwise computation. Second, stepwise computation is promoted from baseline to elaborate patterns, i.e. from a simple system to a combinatory system. Third, a core requirement for all stepwise computational processes is the comparison between collected and needed information in order to insure the contribution to the required task. Interestingly, this point indicates that active perception has an inherent pragmatist dimension.The understanding of emergence in the present thesis goes beyond the distinc- tion between external processes and internal representations, which some current philosophers argue is required to explain emergence. The additional factors are links of various knowledge sources, in which the role of conceptual foundations is two -fold. On the one hand, those conceptual foundations elucidate how various knowledge sources can be linked. On the other, they make possible an interdisci- plinary view of emergence. Given this two -fold role, this thesis shows the unity of task -level emergence. Thus, the thesis demonstrates a cooperation between sci- ence and philosophy for the purpose of understanding the integrity of emergent cognitive phenomena
    corecore