166 research outputs found

    Neuro-Fuzzy Combination for Reactive Mobile Robot Navigation: A Survey

    Get PDF
    Autonomous navigation of mobile robots is a fruitful research area because of the diversity of methods adopted by artificial intelligence. Recently, several works have generally surveyed the methods adopted to solve the path-planning problem of mobile robots. But in this paper, we focus on methods that combine neuro-fuzzy techniques to solve the reactive navigation problem of mobile robots in a previously unknown environment. Based on information sensed locally by an onboard system, these methods aim to design controllers capable of leading a robot to a target and avoiding obstacles encountered in a workspace. Thus, this study explores the neuro-fuzzy methods that have shown their effectiveness in reactive mobile robot navigation to analyze their architectures and discuss the algorithms and metaheuristics adopted in the learning phase

    Analysis and Development of Computational Intelligence based Navigational Controllers for Multiple Mobile Robots

    Get PDF
    Navigational path planning problems of the mobile robots have received considerable attention over the past few decades. The navigation problem of mobile robots are consisting of following three aspects i.e. locomotion, path planning and map building. Based on these three aspects path planning algorithm for a mobile robot is formulated, which is capable of finding an optimal collision free path from the start point to the target point in a given environment. The main objective of the dissertation is to investigate the advanced methodologies for both single and multiple mobile robots navigation in highly cluttered environments using computational intelligence approach. Firstly, three different standalone computational intelligence approaches based on the Adaptive Neuro-Fuzzy Inference System (ANFIS), Cuckoo Search (CS) algorithm and Invasive Weed Optimization (IWO) are presented to address the problem of path planning in unknown environments. Next two different hybrid approaches are developed using CS-ANFIS and IWO-ANFIS to solve the mobile robot navigation problems. The performance of each intelligent navigational controller is demonstrated through simulation results using MATLAB. Experimental results are conducted in the laboratory, using real mobile robots to validate the versatility and effectiveness of the proposed navigation techniques. Comparison studies show, that there are good agreement between them. During the analysis of results, it is noticed that CS-ANFIS and IWO-ANFIS hybrid navigational controllers perform better compared to other discussed navigational controllers. The results obtained from the proposed navigation techniques are validated by comparison with the results from other intelligent techniques such as Fuzzy logic, Neural Network, Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO) and other hybrid algorithms. By investigating the results, finally it is concluded that the proposed navigational methodologies are efficient and robust in the sense, that they can be effectively implemented to solve the path optimization problems of mobile robot in any complex environment

    A novel improved elephant herding optimization for path planning of a mobile robot

    Get PDF
    Swarm intelligence algorithms have been in recent years one of the most used tools for planning the trajectory of a mobile robot. Researchers are applying those algorithms to find the optimal path, which reduces the time required to perform a task by the mobile robot. In this paper, we propose a new method based on the grey wolf optimizer algorithm (GWO) and the improved elephant herding optimization algorithm (IEHO) for planning the optimal trajectory of a mobile robot. The proposed solution consists of developing an IEHO algorithm by improving the basic EHO algorithm and then hybridizing it with the GWO algorithm to take advantage of the exploration and exploitation capabilities of both algorithms. The comparison of the IEHO-GWO hybrid proposed in this work with the GWO, EHO, and cuckoo-search (CS) algorithms via simulation shows its effectiveness in finding an optimal trajectory by avoiding obstacles around the mobile robot

    ОБЕСПЕЧЕНИЕ ГИБКОЙ И АДАПТИРУЕМОЙ НАВИГАЦИИ НАЗЕМНЫХ РОБОТОВ В ДИНАМИЧЕСКИХ СРЕДАХ С ПОМОЩЬЮ ИНТЕРАКТИВНОГО ОБУЧЕНИЯ

    Get PDF
    Federated learning is utilized for automated ground robot navigation, enabling decentralized training and continuous model adaptation. Strategies include hardware selection, ML model design, and hyperparameter fine-tuning. Real-world application involves optimizing communication protocols and evaluating performance with diverse network conditions. Federated learning shows promise for machine learning-based life learning systems in ground robot navigation. Research objective: to explore the use of federated learning in automated ground robot navigation and optimize the system for improved performance in dynamic environments. Materials and methods. The research utilizes federated learning to train machine learning models for ground robot navigation. Hardware selection, ML model design, and hyperparameter fine-tuning are employed. Communication protocols are optimized, and performance is evaluated using multiple gaming machine algorithms. Results. The results show that decreasing the learning rate and increasing hidden units improve model accuracy, while batch size has no significant impact. Communication protocols are evaluated, with Protocol A providing high efficiency but low security, Protocol B offering a balance, and Protocol C prioritizing security. Conclusion. The proposed approach using federated learning enables ground robots to navigate dynamic environments effectively. Optimizing the system involves selecting efficient communication protocols and fine-tuning hyperparameters. Future work includes integrating additional sensors, advanced ML models, and optimizing communication protocols for improved performance and integration with the control system. Overall, this approach enhances ground robot mobility in dynamic environments.Федеративное обучение используется для автоматизированной навигации наземных роботов, обеспечивая децентрализованное обучение и непрерывную адаптацию модели. Стратегии включают выбор оборудования, разработку модели машинного обучения и тонкую настройку гиперпараметров. Реальное приложение включает в себя оптимизацию протоколов связи и оценку производительности в различных сетевых условиях. Федеративное обучение показывает перспективы для систем обучения жизни на основе машинного обучения в навигации наземных роботов. Цель исследования: изучить использование федеративного обучения в автоматизированной навигации наземных роботов и оптимизировать систему для повышения производительности в динамических средах. Материалы и методы. В исследовании используется федеративное обучение для обучения моделей машинного обучения навигации наземных роботов. Используются выбор оборудования, проектирование модели машинного обучения и точная настройка гиперпараметров. Протоколы связи оптимизированы, а производительность оценивается с помощью нескольких алгоритмов игровых автоматов. Результаты. Результаты показывают, что уменьшение скорости обучения и увеличение числа скрытых единиц повышают точность модели, в то время как размер пакета не оказывает существенного влияния. Оцениваются коммуникационные протоколы: протокол A обеспечивает высокую эффективность, но низкую безопасность, протокол B предлагает баланс, а протокол C отдает приоритет безопасности. Заключение. Предлагаемый подход, использующий федеративное обучение, позволяет наземным роботам эффективно перемещаться в динамической среде. Оптимизация системы включает в себя выбор эффективных протоколов связи и тонкую настройку гиперпараметров. Будущая работа включает в себя интеграцию дополнительных датчиков, усовершенствованных моделей машинного обучения и оптимизацию протоколов связи для повышения производительности и интеграции с системой управления. В целом такой подход повышает мобильность наземных роботов в динамичных средах

    Modified Q-Learning Algorithm for Mobile Robot Path Planning Variation using Motivation Model

    Get PDF
    Path planning is an essential algorithm in autonomous mobile robots, including agricultural robots, to find the shortest path and to avoid collisions with obstacles. Q-Learning algorithm is one of the reinforcement learning methods used for path planning. However, for multi-robot system, this algorithm tends to produce the same path for each robot. This research modifies the Q-Learning algorithm in order to produce path variations by utilizing the motivation model, i.e. achievement motivation, in which different motivation parameters will result in different optimum paths. The Motivated Q-Learning (MQL) algorithm proposed in this study was simulated in an area with three scenarios, i.e. without obstacles, uniform obstacles, and random obstacles. The results showed that, in the determined scenario, the MQL can produce 2 to 4 variations of optimum path without any potential of collisions (Jaccard similarity = 0%), in contrast to the Q-Learning algorithm that can only produce one optimum path variation. This result indicates that MQL can solve multi-robots path planning problems, especially when the number of robots is large, by reducing the possibility of collisions as well as decreasing the problem of queues. However, the average computational time of the MQL is slightly longer than that of the Q-Learning

    A generalized laser simulator algorithm for optimal path planning in constraints environment

    Get PDF
    Path planning plays a vital role in autonomous mobile robot navigation, and it has thus become one of the most studied areas in robotics. Path planning refers to a robot's search for a collision-free and optimal path from a start point to a predefined goal position in a given environment. This research focuses on developing a novel path planning algorithm, called Generalized Laser Simulator (GLS), to solve the path planning problem of mobile robots in a constrained environment. This approach allows finding the path for a mobile robot while avoiding obstacles, searching for a goal, considering some constraints and finding an optimal path during the robot movement in both known and unknown environments. The feasible path is determined between the start and goal positions by generating a wave of points in all directions towards the goal point with adhering to constraints. A simulation study employing the proposed approach is applied to the grid map settings to determine a collision-free path from the start to goal positions. First, the grid mapping of the robot's workspace environment is constructed, and then the borders of the workspace environment are detected based on the new proposed function. This function guides the robot to move toward the desired goal. Two concepts have been implemented to find the best candidate point to move next: minimum distance to goal and maximum index distance to the boundary, integrated by negative probability to sort out the most preferred point for the robot trajectory determination. In order to construct an optimal collision-free path, an optimization step was included to find out the minimum distance within the candidate points that have been determined by GLS while adhering to particular constraint's rules and avoiding obstacles. The proposed algorithm will switch its working pattern based on the goal minimum and boundary maximum index distances. For static obstacle avoidance, the boundaries of the obstacle(s) are considered borders of the environment. However, the algorithm detects obstacles as a new border in dynamic obstacles once it occurs in front of the GLS waves. The proposed method has been tested in several test environments with different degrees of complexity. Twenty different arbitrary environments are categorized into four: Simple, complex, narrow, and maze, with five test environments in each. The results demonstrated that the proposed method could generate an optimal collision-free path. Moreover, the proposed algorithm result are compared to some common algorithms such as the A* algorithm, Probabilistic Road Map, RRT, Bi-directional RRT, and Laser Simulator algorithm to demonstrate its effectiveness. The suggested algorithm outperforms the competition in terms of improving path cost, smoothness, and search time. A statistical test was used to demonstrate the efficiency of the proposed algorithm over the compared methods. The GLS is 7.8 and 5.5 times faster than A* and LS, respectively, generating a path 1.2 and 1.5 times shorter than A* and LS. The mean value of the path cost achieved by the proposed approach is 4% and 15% lower than PRM and RRT, respectively. The mean path cost generated by the LS algorithm, on the other hand, is 14% higher than that generated by the PRM. Finally, to verify the performance of the developed method for generating a collision-free path, experimental studies were carried out using an existing WMR platform in labs and roads. The experimental work investigates complete autonomous WMR path planning in the lab and road environments using live video streaming. The local maps were built using data from live video streaming s by real-time image processing to detect the segments of the lab and road environments. The image processing includes several operations to apply GLS on the prepared local map. The proposed algorithm generates the path within the prepared local map to find the path between start-to-goal positions to avoid obstacles and adhere to constraints. The experimental test shows that the proposed method can generate the shortest path and best smooth trajectory from start to goal points in comparison with the laser simulator

    A review: On path planning strategies for navigation of mobile robot

    Get PDF
    This paper presents the rigorous study of mobile robot navigation techniques used so far. The step by step investigations of classical and reactive approaches are made here to understand the development of path planning strategies in various environmental conditions and to identify research gap. The classical approaches such as cell decomposition (CD), roadmap approach (RA), artificial potential field (APF); reactive approaches such as genetic algorithm (GA), fuzzy logic (FL), neural network (NN), firefly algorithm (FA), particle swarm optimization (PSO), ant colony optimization (ACO), bacterial foraging optimization (BFO), artificial bee colony (ABC), cuckoo search (CS), shuffled frog leaping algorithm (SFLA) and other miscellaneous algorithms (OMA) are considered for study. The navigation over static and dynamic condition is analyzed (for single and multiple robot systems) and it has been observed that the reactive approaches are more robust and perform well in all terrain when compared to classical approaches. It is also observed that the reactive approaches are used to improve the performance of the classical approaches as a hybrid algorithm. Hence, reactive approaches are more popular and widely used for path planning of mobile robot. The paper concludes with tabular data and charts comparing the frequency of individual navigational strategies which can be used for specific application in robotics

    A Systematic Literature Review of Path-Planning Strategies for Robot Navigation in Unknown Environment

    Get PDF
    The Many industries, including ports, space, surveillance, military, medicine and agriculture have benefited greatly from mobile robot technology.  An autonomous mobile robot navigates in situations that are both static and dynamic. As a result, robotics experts have proposed a range of strategies. Perception, localization, path planning, and motion control are all required for mobile robot navigation. However, Path planning is a critical component of a quick and secure navigation. Over the previous few decades, many path-planning algorithms have been developed. Despite the fact that the majority of mobile robot applications take place in static environments, there is a scarcity of algorithms capable of guiding robots in dynamic contexts. This review compares qualitatively mobile robot path-planning systems capable of navigating robots in static and dynamic situations. Artificial potential fields, fuzzy logic, genetic algorithms, neural networks, particle swarm optimization, artificial bee colonies, bacterial foraging optimization, and ant-colony are all discussed in the paper. Each method's application domain, navigation technique and validation context are discussed and commonly utilized cutting-edge methods are analyzed. This research will help researchers choose appropriate path-planning approaches for various applications including robotic cranes at the sea ports as well as discover gaps for optimization

    TLBO-Based Adaptive Neurofuzzy Controller for Mobile Robot Navigation in a Strange Environment

    Get PDF
    This work investigates the possibility of using a novel evolutionary based technique as a solution for the navigation problem of a mobile robot in a strange environment which is based on Teaching-Learning-Based Optimization. TLBO is employed to train the parameters of ANFIS structure for optimal trajectory and minimum travelling time to reach the goal. The obtained results using the suggested algorithm are validated by comparison with different results from other intelligent algorithms such as particle swarm optimization (PSO), invasive weed optimization (IWO), and biogeography-based optimization (BBO). At the end, the quality of the obtained results extracted from simulations affirms TLBO-based ANFIS as an efficient alternative method for solving the navigation problem of the mobile robot
    corecore