354 research outputs found

    Integrated computational intelligent paradigm for nonlinear electric circuit models using neural networks, genetic algorithms and sequential quadratic programming

    Full text link
    © 2019, Springer-Verlag London Ltd., part of Springer Nature. In this paper, a novel application of biologically inspired computing paradigm is presented for solving initial value problem (IVP) of electric circuits based on nonlinear RL model by exploiting the competency of accurate modeling with feed forward artificial neural network (FF-ANN), global search efficacy of genetic algorithms (GA) and rapid local search with sequential quadratic programming (SQP). The fitness function for IVP of associated nonlinear RL circuit is developed by exploiting the approximation theory in mean squared error sense using an approximate FF-ANN model. Training of the networks is conducted by integrated computational heuristic based on GA-aided with SQP, i.e., GA-SQP. The designed methodology is evaluated to variants of nonlinear RL systems based on both AC and DC excitations for number of scenarios with different voltages, resistances and inductance parameters. The comparative studies of the proposed results with Adam’s numerical solutions in terms of various performance measures verify the accuracy of the scheme. Results of statistics based on Monte-Carlo simulations validate the accuracy, convergence, stability and robustness of the designed scheme for solving problem in nonlinear circuit theory

    Estimating Parameters of Partial Differential Equations with Gradient Matching

    Get PDF
    Parameter inference in partial differential equations (PDEs) is a problem that many researchers are interested in. The conventional methods suffer from severe computational costs because these method require to solve the PDEs repeatedly by numerical integration. The concept of gradient matching have been proposed in order to reduce the computational complexity, which consists of two steps. First, the data are interpolated with certain smoothing methods. Then, the partial derivatives of the interpolants are calculated and the parameters are optimized to minimize the distance (measured by loss functions) between partial derivatives of interpolants and the PDE systems. In this article, we first studied the parameter inference accuracy of gradient matching based on two simple PDE models. Then the method of gradient matching was used to infer the parameters of PDE models describing cell movement and select the most appropriate model

    A Brief Review on Mathematical Tools Applicable to Quantum Computing for Modelling and Optimization Problems in Engineering

    Get PDF
    Since its emergence, quantum computing has enabled a wide spectrum of new possibilities and advantages, including its efficiency in accelerating computational processes exponentially. This has directed much research towards completely novel ways of solving a wide variety of engineering problems, especially through describing quantum versions of many mathematical tools such as Fourier and Laplace transforms, differential equations, systems of linear equations, and optimization techniques, among others. Exploration and development in this direction will revolutionize the world of engineering. In this manuscript, we review the state of the art of these emerging techniques from the perspective of quantum computer development and performance optimization, with a focus on the most common mathematical tools that support engineering applications. This review focuses on the application of these mathematical tools to quantum computer development and performance improvement/optimization. It also identifies the challenges and limitations related to the exploitation of quantum computing and outlines the main opportunities for future contributions. This review aims at offering a valuable reference for researchers in fields of engineering that are likely to turn to quantum computing for solutions. Doi: 10.28991/ESJ-2023-07-01-020 Full Text: PD

    Memetic Algorithms with Local Search Chains in R: The Rmalschains Package

    Get PDF
    Global optimization is an important field of research both in mathematics and computer sciences. It has applications in nearly all fields of modern science and engineering. Memetic algorithms are powerful problem solvers in the domain of continuous optimization, as they offer a trade-off between exploration of the search space using an evolutionary algorithm scheme, and focused exploitation of promising regions with a local search algorithm. In particular, we describe the memetic algorithms with local search chains (MA-LS-Chains) paradigm, and the R package Rmalschains, which implements them. MA-LS-Chains has proven to be effective compared to other algorithms, especially in high-dimensional problem solving. In an experimental study, we demonstrate the advantages of using Rmalschains for high-dimension optimization problems in comparison to other optimization methods already available in R.This work was supported in part by the Spanish Ministry of Science and Innovation (MICINN) under Project TIN-2009-14575. The work was performed while C. Bergmeir held a scholarship from the Spanish Ministry of Education (MEC) of the “Programa de Formación del Profesorado Universitario (FPU)”

    Weed/Plant Classification Using Evolutionary Optimised Ensemble Based On Local Binary Patterns

    Get PDF
    This thesis presents a novel pixel-level weed classification through rotation-invariant uniform local binary pattern (LBP) features for precision weed control. Based on two-level optimisation structure; First, Genetic Algorithm (GA) optimisation to select the best rotation-invariant uniform LBP configurations; Second, Covariance Matrix Adaptation Evolution Strategy (CMA-ES) in the Neural Network (NN) ensemble to select the best combinations of voting weights of the predicted outcome for each classifier. The model obtained 87.9% accuracy in CWFID public benchmark

    Scientific research trends about metaheuristics in process optimization and case study using the desirability function

    Get PDF
    This study aimed to identify the research gaps in Metaheuristics, taking into account the publications entered in a database in 2015 and to present a case study of a company in the Sul Fluminense region using the Desirability function. To achieve this goal, applied research of exploratory nature and qualitative approach was carried out, as well as another of quantitative nature. As method and technical procedures were the bibliographical research, some literature review, and an adopted case study respectively. As a contribution of this research, the holistic view of opportunities to carry out new investigations on the theme in question is pointed out. It is noteworthy that the identified study gaps after the research were prioritized and discriminated, highlighting the importance of the viability of metaheuristic algorithms, as well as their benefits for process optimization
    corecore