32 research outputs found

    Optimizing task placement in robotic cells

    Get PDF
    The primary objective of this dissertation is to develop novel and practical techniques for optimal task placement in robotic cells. To this end, it is shown how task placement affect the efficiency of the cell, whether the task is automated fiber placement to create composite materials, gluing or inspection. Here, efficiency of the cell is defined by either cycle time of the production or distance to singularity, having collision avoidance as a constraint. Task placement, even for one robotic arm, is an under-constrained problem in nature. This issue drastically grows in case of redundant robotic cells. Actuator redundancy in robotic cells is added by either a positioner or another manipulator. This work is focused on taking advantage of redundancy in robotic cells and optimizing it for better performance. One of the main challenges here is to identify the number of independent placement parameters. Therefore, we ignore ineffective variables and only focus on minimum number of parameters possible. Hence, faster optimization process and more precise results are obtained. Another challenge is in motion planning of redundant cells. Because there can be infinite solutions for such cells, there is room for optimization. In this work, we propose methods to fix the optimal placement of the task and, furthermore, assign the optimal motion planning to all manipulators in the cell, simultaneously. A novel method is proposed to identify the number of independent parameters and applied to a gluing path for a coordinated redundant robotic workcell. The workcell consists of a generic six-DOF serial manipulator and a one-DOF redundancy provider (RP). Two cases of RPs are investigated, namely a rotary table and a linear guide. An innovative method using swept volume is proposed for determining the number of independent parameters for both cases under study. The outcome of this study is an intuitive method to identify the number of independent parameters in redundant cells. The results are compared between using all initial parameters, as contrary to only the independent ones. It is proven that the proposed method improves the optimization efficiency by 32%. Moreover, the performance of the rotary table is compared to the linear guide, for a specific gluing application. Optimization methods in this work are based on Particle Swarm Optimization (PSO). A workcell consisting of a six degrees of freedom (DOF) serial manipulator, a six-DOF parallel manipulator and a rotary table mounted on the parallel manipulator is studies for automated fiber placement task. The solution to motion planning is obtained considering the singularities of the serial manipulator and the workspace boundaries of all manipulators. The algorithm to obtain the optimum path placement is explained through a simple example and the results for a helix path with nearly 2,700 points around the workpiece is represented. The results for motion planning are represented where distance to singularity is maximized, collision avoidance and workspace boundaries are respected. The result is obtained after 10 iterations with 20 particles. This outcome of this study is a reliable and easy to apply motion planning algorithm to be used in redundant cells. Another challenge in this work is combinatorial task placement that arises in robotic inspection cells. The goal is to improve the efficiency of a turbine blade inspection cell through optimizing the placement of the camera and optimizing the sequence of the images. The workcell contains a six-DOF serial manipulator that is holding the blade and shows it to the camera from different angles, whereas the camera takes inspection images. The problem at hand consists of a six-DOF continuous optimization for camera placement and discrete combinatorial optimization of sequence of images (end-effector poses). A novel combined approach is introduced, called Blind Dynamic Particle Swarm Optimization (BD-PSO), to simultaneously obtain the optimal design for both domains. Our objective is to minimize the cycle time, while avoiding any collisions in the workcell during the inspection operation. Even though PSO is vastly used in engineering problems, novelty of the proposed combinatorial optimization method is in its ability to be used efficiently in the traveling salesman problems where the distances between cities are unknown (blind) and the distances are subject to change (dynamic). This highly unpredictable domain is the case of the inspection cell where the cycle time between images will change for different camera placements. The cycle time is calculated based on weighted joint travel time of the robot. All the eight configurations of the robot are taken into the consideration, therefore, robot’s configuration is optimized in the final result as well. The outcome of this study is an innovative hybrid algorithm to simultaneously solve combinatorial and continues problems. Results show fast convergence and reliable motions. The test of benchmarks selected from TSPLIB shows that the results obtained by this algorithm are better and closer to the theoretical optimal values with better robustness than those obtained by other methods. The best placement of camera and best image sequence (for 8 images) is obtained after 11 iterations using 30 particles. In general, the main results of this thesis are three algorithms: an algorithm to obtain minimum number of placement parameters in redundant robotic workcells; an algorithm for motion planning of highly redundant cells; and an algorithm to optimize camera placement and simultaneously obtain the optimal image sequence in an inspection cell

    Industrial Robotics

    Get PDF
    This book covers a wide range of topics relating to advanced industrial robotics, sensors and automation technologies. Although being highly technical and complex in nature, the papers presented in this book represent some of the latest cutting edge technologies and advancements in industrial robotics technology. This book covers topics such as networking, properties of manipulators, forward and inverse robot arm kinematics, motion path-planning, machine vision and many other practical topics too numerous to list here. The authors and editor of this book wish to inspire people, especially young ones, to get involved with robotic and mechatronic engineering technology and to develop new and exciting practical applications, perhaps using the ideas and concepts presented herein

    Worker-robot cooperation and integration into the manufacturing workcell via the holonic control architecture

    Get PDF
    Cooperative manufacturing is a new field of research, which addresses new challenges beyond the physical safety of the worker. Those new challenges appear due to the need to connect the worker and the cobot from the informatics point of view in one cooperative workcell. This requires developing an appropriate manufacturing control system, which fits the nature of both the worker and the cobot. Furthermore, the manufacturing control system must be able to understand the production variations, to guide the cooperation between worker and the cobot and adapt with the production variations.Die kooperative Fertigung ist ein neues Forschungsgebiet, das sich neuen Herausforderungen stellt. Diese neuen Herausforderungen ergeben sich aus der Notwendigkeit, den Arbeiter und den Cobot aus der Sicht der Informatik in einem kooperativen Arbeitsplatz zu verbinden. Dies erfordert die Entwicklung eines geeigneten Produktionskontrollsystems, das sowohl der Natur des Arbeiters als auch der des Cobots entspricht. Darüber hinaus muss die Fertigungssteuerung in der Lage sein, die Produktionsschwankungen zu verstehen, um die Zusammenarbeit zwischen Arbeiter und Cobot zu steuern

    Method for robot manipulator joint wear reduction by finding the optimal robot placement in a robotic cell

    Get PDF
    We describe a method for robotic cell optimization by changing the placement of the robot manipulator within the cell in applications with a fixed end-point trajectory. The goal is to reduce the overall robot joint wear and to prevent uneven joint wear when one or several joints are stressed more than the other joints. Joint wear is approximated by calculating the integral of the mechanical work of each joint during the whole trajectory, which depends on the joint angular velocity and torque. The method relies on using a dynamic simulation for the evaluation of the torques and velocities in robot joints for individual robot positions. Verification of the method was performed using CoppeliaSim and a laboratory robotic cell with the collaborative robot UR3. The results confirmed that, with proper robot base placement, the overall wear of the joints of a robotic arm could be reduced from 22% to 53% depending on the trajectory.Web of Science1112art. no. 539

    Background, Systematic Review, Challenges and Outlook

    Get PDF
    Publisher Copyright: © 2013 IEEE. This research is supported by the Digital Manufacturing and Design Training Network (DiManD) project funded by the European Union through the Marie Skłodowska-Curie Innovative Training Networks (H2020-MSCA-ITN-2018) under grant agreement no. 814078The concept of smart manufacturing has attracted huge attention in the last years as an answer to the increasing complexity, heterogeneity, and dynamism of manufacturing ecosystems. This vision embraces the notion of autonomous and self-organized elements, capable of self-management and self-decision-making under a context-aware and intelligent infrastructure. While dealing with dynamic and uncertain environments, these solutions are also contributing to generating social impact and introducing sustainability into the industrial equation thanks to the development of task-specific resources that can be easily adapted, re-used, and shared. A lot of research under the context of self-organization in smart manufacturing has been produced in the last decade considering different methodologies and developed under different contexts. Most of these works are still in the conceptual or experimental stage and have been developed under different application scenarios. Thus, it is necessary to evaluate their design principles and potentiate their results. The objective of this paper is threefold. First, to introduce the main ideas behind self-organization in smart manufacturing. Then, through a systematic literature review, describe the current status in terms of technological and implementation details, mechanisms used, and some of the potential future research directions. Finally, the presentation of an outlook that summarizes the main results of this work and their interrelation to facilitate the development of self-organized manufacturing solutions. By providing a holistic overview of the field, we expect that this work can be used by academics and practitioners as a guide to generate awareness of possible requirements, industrial challenges, and opportunities that future self-organizing solutions can have towards a smart manufacturing transition.publishersversionpublishe

    Proceedings of the 1st Annual SMACC Research Seminar 2016

    Get PDF
    The Annual SMACC Research Seminar is a new forum for researchers from VTT Technical Research Centre of Finland Ltd, Tampere University of Technology (TUT) and industry to present their research on the area of smart machines and manufacturing. The 1st seminar is held on 10th of October 2016 in Tampere, Finland. The objective of the seminar is to publish results of the research to wider audiences and to offer researchers a new forum for discussing methods, outcomes and research challenges of current research projects on SMACC themes and to find common research interests and new research ideas. Smart Machines and Manufacturing Competence Centre - SMACC is joint strategic alliance of VTT Ltd and TUT in the area of intelligent machines and manufacturing. SMACC offers unique services for SME`s in the field of machinery and manufacturing – key features are rapid solutions, cutting-edge research expertise and extensive partnership networks. SMACC is promoting digitalization in mechanical engineering and making scientific research with domestic and international partners in several different topics (www.smacc.fi)

    Smart Technologies for Precision Assembly

    Get PDF
    This open access book constitutes the refereed post-conference proceedings of the 9th IFIP WG 5.5 International Precision Assembly Seminar, IPAS 2020, held virtually in December 2020. The 16 revised full papers and 10 revised short papers presented together with 1 keynote paper were carefully reviewed and selected from numerous submissions. The papers address topics such as assembly design and planning; assembly operations; assembly cells and systems; human centred assembly; and assistance methods in assembly

    Parallel Manipulators

    Get PDF
    In recent years, parallel kinematics mechanisms have attracted a lot of attention from the academic and industrial communities due to potential applications not only as robot manipulators but also as machine tools. Generally, the criteria used to compare the performance of traditional serial robots and parallel robots are the workspace, the ratio between the payload and the robot mass, accuracy, and dynamic behaviour. In addition to the reduced coupling effect between joints, parallel robots bring the benefits of much higher payload-robot mass ratios, superior accuracy and greater stiffness; qualities which lead to better dynamic performance. The main drawback with parallel robots is the relatively small workspace. A great deal of research on parallel robots has been carried out worldwide, and a large number of parallel mechanism systems have been built for various applications, such as remote handling, machine tools, medical robots, simulators, micro-robots, and humanoid robots. This book opens a window to exceptional research and development work on parallel mechanisms contributed by authors from around the world. Through this window the reader can get a good view of current parallel robot research and applications
    corecore