242 research outputs found

    Multiple Moving Object Recognitions in video based on Log Gabor-PCA Approach

    Full text link
    Object recognition in the video sequence or images is one of the sub-field of computer vision. Moving object recognition from a video sequence is an appealing topic with applications in various areas such as airport safety, intrusion surveillance, video monitoring, intelligent highway, etc. Moving object recognition is the most challenging task in intelligent video surveillance system. In this regard, many techniques have been proposed based on different methods. Despite of its importance, moving object recognition in complex environments is still far from being completely solved for low resolution videos, foggy videos, and also dim video sequences. All in all, these make it necessary to develop exceedingly robust techniques. This paper introduces multiple moving object recognition in the video sequence based on LoG Gabor-PCA approach and Angle based distance Similarity measures techniques used to recognize the object as a human, vehicle etc. Number of experiments are conducted for indoor and outdoor video sequences of standard datasets and also our own collection of video sequences comprising of partial night vision video sequences. Experimental results show that our proposed approach achieves an excellent recognition rate. Results obtained are satisfactory and competent.Comment: 8,26,conferenc

    Perceptive agents with attentive interfaces : learning and vision for man-machine systems

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Program in Media Arts & Sciences, 1996.Includes bibliographical references (leaves 107-116).by Trevor Jackson Darrell.Ph. D

    Face and Gesture Recognition for Human-Robot Interaction

    Get PDF

    Dynamic gesture recognition using transformation invariant hand shape recognition

    Get PDF
    In this thesis a detailed framework is presented for accurate real time gesture recognition. Our approach to develop a hand-shape classifier, trained using computer animation, along with its application in dynamic gesture recognition is described. The system developed operates in real time and provides accurate gesture recognition. It operates using a single low resolution camera and operates in Matlab on a conventional PC running Windows XP. The hand shape classifier outlined in this thesis uses transformation invariant subspaces created using Principal Component Analysis (PCA). These subspaces are created from a large vocabulary created in a systematic maimer using computer animation. In recognising dynamic gestures we utilise both hand shape and hand position information; these are two o f the main features used by humans in distinguishing gestures. Hidden Markov Models (HMMs) are trained and employed to recognise this combination of hand shape and hand position features. During the course o f this thesis we have described in detail the inspiration and motivation behind our research and its possible applications. In this work our emphasis is on achieving a high speed system that works in real time with high accuracy

    Action Recognition in Videos: from Motion Capture Labs to the Web

    Full text link
    This paper presents a survey of human action recognition approaches based on visual data recorded from a single video camera. We propose an organizing framework which puts in evidence the evolution of the area, with techniques moving from heavily constrained motion capture scenarios towards more challenging, realistic, "in the wild" videos. The proposed organization is based on the representation used as input for the recognition task, emphasizing the hypothesis assumed and thus, the constraints imposed on the type of video that each technique is able to address. Expliciting the hypothesis and constraints makes the framework particularly useful to select a method, given an application. Another advantage of the proposed organization is that it allows categorizing newest approaches seamlessly with traditional ones, while providing an insightful perspective of the evolution of the action recognition task up to now. That perspective is the basis for the discussion in the end of the paper, where we also present the main open issues in the area.Comment: Preprint submitted to CVIU, survey paper, 46 pages, 2 figures, 4 table

    Side-View Face Recognition

    Get PDF
    Side-view face recognition is a challenging problem with many applications. Especially in real-life scenarios where the environment is uncontrolled, coping with pose variations up to side-view positions is an important task for face recognition. In this paper we discuss the use of side view face recognition techniques to be used in house safety applications. Our aim is to recognize people as they pass through a door, and estimate their location in the house. Here, we compare available databases appropriate for this task, and review current methods for profile face recognition

    A Study on Human Motion Acquisition and Recognition Employing Structured Motion Database

    Get PDF
    ä¹å·žå·„ę„­å¤§å­¦åšå£«å­¦ä½č«–ę–‡ 学位čؘē•Ŗ号:巄博ē”²ē¬¬332å·ć€€å­¦ä½ęŽˆäøŽå¹“ęœˆę—„:å¹³ęˆ24幓3꜈23ę—„1 Introduction||2 Human Motion Representation||3 Human Motion Recognition||4 Automatic Human Motion Acquisition||5 Human Motion Recognition Employing Structured Motion Database||6 Analysis on the Constraints in Human Motion Recognition||7 Multiple Personsā€™ Action Recognition||8 Discussion and ConclusionsHuman motion analysis is an emerging research field for the video-based applications capable of acquiring and recognizing human motions or actions. The automaticity of such a system with these capabilities has vital importance in real-life scenarios. With the increasing number of applications, the demand for a human motion acquisition system is gaining importance day-by-day. We develop such kind of acquisition system based on body-parts modeling strategy. The system is able to acquire the motion by positioning body joints and interpreting those joints by the inter-parts inclination. Besides the development of the acquisition system, there is increasing need for a reliable human motion recognition system in recent years. There are a number of researches on motion recognition is performed in last two decades. At the same time, an enormous amount of bulk motion datasets are becoming available. Therefore, it becomes an indispensable task to develop a motion database that can deal with large variability of motions efficiently. We have developed such a system based on the structured motion database concept. In order to gain a perspective on this issue, we have analyzed various aspects of the motion database with a view to establishing a standard recognition scheme. The conventional structured database is subjected to improvement by considering three aspects: directional organization, nearest neighbor searching problem resolution, and prior direction estimation. In order to investigate and analyze comprehensively the effect of those aspects on motion recognition, we have adopted two forms of motion representation, eigenspace-based motion compression, and B-Tree structured database. Moreover, we have also analyzed the two important constraints in motion recognition: missing information and clutter outdoor motions. Two separate systems based on these constraints are also developed that shows the suitable adoption of the constraints. However, several people occupy a scene in practical cases. We have proposed a detection-tracking-recognition integrated action recognition system to deal with multiple people case. The system shows decent performance in outdoor scenarios. The experimental results empirically illustrate the suitability and compatibility of various factors of the motion recognition

    Defining the Pose of any 3D Rigid Object and an Associated Distance

    Get PDF
    The pose of a rigid object is usually regarded as a rigid transformation, described by a translation and a rotation. However, equating the pose space with the space of rigid transformations is in general abusive, as it does not account for objects with proper symmetries -- which are common among man-made objects.In this article, we define pose as a distinguishable static state of an object, and equate a pose with a set of rigid transformations. Based solely on geometric considerations, we propose a frame-invariant metric on the space of possible poses, valid for any physical rigid object, and requiring no arbitrary tuning. This distance can be evaluated efficiently using a representation of poses within an Euclidean space of at most 12 dimensions depending on the object's symmetries. This makes it possible to efficiently perform neighborhood queries such as radius searches or k-nearest neighbor searches within a large set of poses using off-the-shelf methods. Pose averaging considering this metric can similarly be performed easily, using a projection function from the Euclidean space onto the pose space. The practical value of those theoretical developments is illustrated with an application of pose estimation of instances of a 3D rigid object given an input depth map, via a Mean Shift procedure
    • ā€¦
    corecore