8,174 research outputs found

    Radar Technology

    Get PDF
    In this book “Radar Technology”, the chapters are divided into four main topic areas: Topic area 1: “Radar Systems” consists of chapters which treat whole radar systems, environment and target functional chain. Topic area 2: “Radar Applications” shows various applications of radar systems, including meteorological radars, ground penetrating radars and glaciology. Topic area 3: “Radar Functional Chain and Signal Processing” describes several aspects of the radar signal processing. From parameter extraction, target detection over tracking and classification technologies. Topic area 4: “Radar Subsystems and Components” consists of design technology of radar subsystem components like antenna design or waveform design

    An electromagnetic imaging system for metallic object detection and classification

    Get PDF
    PhD ThesisElectromagnetic imaging currently plays a vital role in various disciplines, from engineering to medical applications and is based upon the characteristics of electromagnetic fields and their interaction with the properties of materials. The detection and characterisation of metallic objects which pose a threat to safety is of great interest in relation to public and homeland security worldwide. Inspections are conducted under the prerequisite that is divested of all metallic objects. These inspection conditions are problematic in terms of the disruption of the movement of people and produce a soft target for terrorist attack. Thus, there is a need for a new generation of detection systems and information technologies which can provide an enhanced characterisation and discrimination capabilities. This thesis proposes an automatic metallic object detection and classification system. Two related topics have been addressed: to design and implement a new metallic object detection system; and to develop an appropriate signal processing algorithm to classify the targeted signatures. The new detection system uses an array of sensors in conjunction with pulsed excitation. The contributions of this research can be summarised as follows: (1) investigating the possibility of using magneto-resistance sensors for metallic object detection; (2) evaluating the proposed system by generating a database consisting of 12 real handguns with more than 20 objects used in daily life; (3) extracted features from the system outcomes using four feature categories referring to the objects’ shape, material composition, time-frequency signal analysis and transient pulse response; and (4) applying two classification methods to classify the objects into threats and non-threats, giving a successful classification rate of more than 92% using the feature combination and classification framework of the new system. The study concludes that novel magnetic field imaging system and their signal outputs can be used to detect, identify and classify metallic objects. In comparison with conventional induction-based walk-through metal detectors, the magneto-resistance sensor array-based system shows great potential for object identification and discrimination. This novel system design and signal processing achievement may be able to produce significant improvements in automatic threat object detection and classification applications.Iraqi Cultural Attaché, Londo

    Passive low frequency RFID for non-destructive evaluation and monitoring

    Get PDF
    Ph. D ThesisDespite of immense research over the years, defect monitoring in harsh environmental conditions still presents notable challenges for Non-Destructive Testing and Evaluation (NDT&E) and Structural Health Monitoring (SHM). One of the substantial challenges is the inaccessibility to the metal surface due to the large stand-off distance caused by the insulation layer. The hidden nature of corrosion and defect under thick insulation in harsh environmental conditions may result in it being not noticed and ultimately leading to failures. Generally electromagnetic NDT&E techniques which are used in pipeline industries require the removal of the insulation layer or high powered expensive equipment. Along with these, other limitations in the existing techniques create opportunities for novel systems to solve the challenges caused by Corrosion under Insulation (CUI). Extending from Pulsed Eddy Current (PEC), this research proposes the development and use of passive Low Frequency (LF) RFID hardware system for the detection and monitoring of corrosion and cracks on both ferrous and non-ferrous materials at varying high temperature conditions. The passive, low cost essence of RFID makes it an enchanting technique for long term condition monitoring. The contribution of the research work can be summarised as follows: (1) implementation of novel LF RFID sensor systems and the rig platform, experimental studies validating the detection capabilities of corrosion progression samples using transient feature analysis with respect to permeability and electrical conductivity changes along with enhanced sensitivity demonstration using ferrite sheet attached to the tag; (2) defect detection using swept frequency method to study the multiple frequency behaviour and further temperature suppression using feature fusion technique; (3) inhomogeneity study on ferrous materials at varying temperature and demonstration of the potential of the RFID system; (4) use of RFID tag with ceramic filled Poly-tetra-fluoro-ethyulene (PTFE) substrate for larger applicability of the sensing system in the industry; (5) lift-off independent defect monitoring using passive sweep frequency RFID sensors and feature extraction and fusion for robustness improvement. This research concludes that passive LF RFID system can be used to detect corrosion and crack on both ferrous and non-ferrous materials and then the system can be used to compensate for temperature variation making it useful for a wider range of applications. However, significant challenges such as permanent deployment of the tags for long term monitoring at higher temperatures and much higher standoff distance, still require improvement for real-world applicability.Engineering and Physical Sciences Research Council (EPSRC) CASE, National Nuclear Laboratory (NNL)

    Radar target identification based on complex natural resonances

    Get PDF

    Biomedical Sensing and Imaging

    Get PDF
    This book mainly deals with recent advances in biomedical sensing and imaging. More recently, wearable/smart biosensors and devices, which facilitate diagnostics in a non-clinical setting, have become a hot topic. Combined with machine learning and artificial intelligence, they could revolutionize the biomedical diagnostic field. The aim of this book is to provide a research forum in biomedical sensing and imaging and extend the scientific frontier of this very important and significant biomedical endeavor

    Study of Non-Strange Baryon Resonances with Meson Photoproduction

    Full text link
    Photoproduction of mesons is an excellent tool for the study of nucleon resonances. Complementary to pion induced reactions, photoproduction on the free proton contributes to the determination of the basic properties of nucleon resonances like excitation energy, decay widths, spin, and the coupling to the photon. Photoproduction from light nuclei, in particular from the deuteron, reveals the isospin structure of the electromagnetic excitation of the nucleon. During the last few years, progress in this field has been substantial. New accelerator facilities combined with state-of-the-art detector technologies have pushed the experiments to unprecedented sensitivity and precision. The experimental progress has been accompanied by new developments for the reaction models, necessary to extract the properties of the nucleon states, and for modern hadron models which try to connect these properties to QCD. The emphasis of this review lies on the experimental side and focuses on experiments aiming at precise studies of the low-lying nucleon resonances.Comment: 87 pages, 67 figures, Prog. Part. Nucl. Phys., accepte

    Phase History Decomposition for Efficient Scatterer Classification in SAR Imagery

    Get PDF
    A new theory and algorithm for scatterer classification in SAR imagery is presented. The automated classification process is operationally efficient compared to existing image segmentation methods requiring human supervision. The algorithm reconstructs coarse resolution subimages from subdomains of the SAR phase history. It analyzes local peaks in the subimages to determine locations and geometric shapes of scatterers in the scene. Scatterer locations are indicated by the presence of a stable peak in all subimages for a given subaperture, while scatterer shapes are indicated by changes in pixel intensity. A new multi-peak model is developed from physical models of electromagnetic scattering to predict how pixel intensities behave for different scatterer shapes. The algorithm uses a least squares classifier to match observed pixel behavior to the model. Classification accuracy improves with increasing fractional bandwidth and is subject to the high-frequency and wide-aperture approximations of the multi-peak model. For superior computational efficiency, an integrated fast SAR imaging technique is developed to combine the coarse resolution subimages into a final SAR image having fine resolution. Finally, classification results are overlaid on the SAR image so that analysts can deduce the significance of the scatterer shape information within the image context

    Investigation of non-cooperative target recognition of small and slow moving air targets in modern air defence surveillance radar

    Get PDF
    This thesis covers research in the field of non-cooperative target recognition given the limitations of modern air defence surveillance radars. The potential presence of low observable manned or unmanned targets within the vast surveillance volume demand highly sensitive systems. This may again introduce unwanted detections of single birds of comparable radar cross section, previously avoided by use of wide clutter rejection filters and sensitivity time control. The demand for methods effectively separating between birds and slow moving manmade targets is evident. The research questions addressed are connected to identification of characteristic features of birds and manmade targets of comparable size. Ultimately the goal has been to find methods that can utilize such features to effectively distinguish between the classes. In contrast to the vast majority of non-cooperative target recognition publications, this thesis includes non-rigid targets covering a range of dielectric properties and targets falling in the resonant and Rayleigh scattering regions. These factors combined with insufficient spatial resolution for classification require alternative approaches such as utilization of periodic RCS modulation, micro-Doppler- and polarimetric signatures. Signatures of birds and UAVs are investigated through electromagnetic prediction and radar measurements. A flexible and fully polarimetric radar capable of simultaneous operation in both L- and S-band is developed for collection of relevant signatures. Inspired by the use of polarimetric radar for classification of precipitation covered in the weather radar literature, focus has been on using similar methods to recognize signatures of rotors, propellers and bird wings. Novel micro-Doppler signatures combining polarimetric information from this sensor is found to hold information about the orientation of such target parts. This information combined with several other features is evaluated for classification. The benefit from involving polarimetric measurements is especially investigated, and is found to be highly valuable when information provided by other methods is limited

    The use of late time response for stand off onbody concealed weapon detection

    Get PDF
    A new system for remote detection of onbody concealed weapons such as knives and handheld guns at standoff distances presented in this thesis. The system was designed, simulated, constructed and tested in the laboratory. The detection system uses an Ultrawide Band (UWB) antenna to bombard the target with a UWB electromagnetic pulse. This incident pulse induces electrical currents in the surface of an object such as a knife, which given appropriate conditions these currents generate an electromagnetic backscatter radiation. The radiated waves are detected using another UWB antenna to obtain the Late Time Response (LTR) signature of the detected object. The LTR signature was analysed using the Continuous Wavelet Transform (CWT) in order to assess the nature and the geometry of the object. The thesis presents the work which divided into two related areas. The first involved the design, simulation, fabrication, and testing of an Ultra-wide Band (UWB) antenna with operating bandwidth of 0.25 – 3.0 GHz and specific characteristics. Simulated and measured results show that the designed antenna achieves the design objectives which are, flat gain, a VSWR of around unity and distortion less transmitted narrow pulse. The operating bandwidth was chosen to cover the fundamental Complex Natural Resonance (CNR) modes of most firearms and to give a fine enough time resolution. The second area covered by this thesis presents a new approach for extract target signature based on the Continuous Wavelet Transform (CWT) applied to the scattering response of onbody concealed weapons. A series of experiments were conducted to test the operation of the detection system which involved onbody and offbody objects such as, knives, handheld guns, and a number of metallic wires of various dimensions. Practical and simulation results were in good agreement demonstrating the success of the approach of using the CWT in analyzing the LTR signature which is used for the first time in this work. Spectral response for every target could be seen as a distribution in which the energy level and life-time depended on the target material and geometry. The spectral density provides very powerful information concerning target unique signature
    • …
    corecore