5,312 research outputs found

    From 2-sequents and Linear Nested Sequents to Natural Deduction for Normal Modal Logics

    Get PDF
    We extend to natural deduction the approach of Linear Nested Sequents and 2-sequents. Formulas are decorated with a spatial coordinate, which allows a formulation of formal systems in the original spirit of natural deduction---only one introduction and one elimination rule per connective, no additional (structural) rule, no explicit reference to the accessibility relation of the intended Kripke models. We give systems for the normal modal logics from K to S4. For the intuitionistic versions of the systems, we define proof reduction, and prove proof normalisation, thus obtaining a syntactical proof of consistency. For logics K and K4 we use existence predicates (following Scott) for formulating sound deduction rules

    Efficient Constraints on Possible Worlds for Reasoning about Necessity

    Get PDF
    Modal logics offer natural, declarative representations for describing both the modular structure of logical specifications and the attitudes and behaviors of agents. The results of this paper further the goal of building practical, efficient reasoning systems using modal logics. The key problem in modal deduction is reasoning about the world in a model (or scope in a proof) at which an inference rule is applied—a potentially hard problem. This paper investigates the use of partial-order mechanisms to maintain constraints on the application of modal rules in proof search in restricted languages. The main result is a simple, incremental polynomial-time algorithm to correctly order rules in proof trees for combinations of K, K4, T and S4 necessity operators governed by a variety of interactions, assuming an encoding of negation using a scoped constant ┴. This contrasts with previous equational unification methods, which have exponential performance in general because they simply guess among possible intercalations of modal operators. The new, fast algorithm is appropriate for use in a wide variety of applications of modal logic, from planning to logic programming

    Efficient Constraints on Possible Worlds for Reasoning About Necessity

    Get PDF
    Modal logics offer natural, declarative representations for describing both the modular structure of logical specifications and the attitudes and behaviors of agents. The results of this paper further the goal of building practical, efficient reasoning systems using modal logics. The key problem in modal deduction is reasoning about the world in a model (or scope in a proof) at which an inference rule is applied - a potentially hard problem. This paper investigates the use of partial-order mechanisms to maintain constraints on the application of modal rules in proof search in restricted languages. The main result is a simple, incremental polynomial-time algorithm to correctly order rules in proof trees for combinations of K, K4, T and S4 necessity operators governed by a variety of interactions, assuming an encoding of negation using a scoped constant ⊥. This contrasts with previous equational unification methods, which have exponential performance in general because they simply guess among possible intercalations of modal operators. The new, fast algorithm is appropriate for use in a wide variety of applications of modal logic, from planning to logic programming

    Propositional Logics Complexity and the Sub-Formula Property

    Full text link
    In 1979 Richard Statman proved, using proof-theory, that the purely implicational fragment of Intuitionistic Logic (M-imply) is PSPACE-complete. He showed a polynomially bounded translation from full Intuitionistic Propositional Logic into its implicational fragment. By the PSPACE-completeness of S4, proved by Ladner, and the Goedel translation from S4 into Intuitionistic Logic, the PSPACE- completeness of M-imply is drawn. The sub-formula principle for a deductive system for a logic L states that whenever F1,...,Fk proves A, there is a proof in which each formula occurrence is either a sub-formula of A or of some of Fi. In this work we extend Statman result and show that any propositional (possibly modal) structural logic satisfying a particular formulation of the sub-formula principle is in PSPACE. If the logic includes the minimal purely implicational logic then it is PSPACE-complete. As a consequence, EXPTIME-complete propositional logics, such as PDL and the common-knowledge epistemic logic with at least 2 agents satisfy this particular sub-formula principle, if and only if, PSPACE=EXPTIME. We also show how our technique can be used to prove that any finitely many-valued logic has the set of its tautologies in PSPACE.Comment: In Proceedings DCM 2014, arXiv:1504.0192

    Dual-Context Calculi for Modal Logic

    Get PDF
    We present natural deduction systems and associated modal lambda calculi for the necessity fragments of the normal modal logics K, T, K4, GL and S4. These systems are in the dual-context style: they feature two distinct zones of assumptions, one of which can be thought as modal, and the other as intuitionistic. We show that these calculi have their roots in in sequent calculi. We then investigate their metatheory, equip them with a confluent and strongly normalizing notion of reduction, and show that they coincide with the usual Hilbert systems up to provability. Finally, we investigate a categorical semantics which interprets the modality as a product-preserving functor.Comment: Full version of article previously presented at LICS 2017 (see arXiv:1602.04860v4 or doi: 10.1109/LICS.2017.8005089

    Modal Linear Logic in Higher Order Logic, an experiment in Coq

    No full text
    The sequent calculus of classical modal linear logic KDT 4lin is coded in the higher order logic using the proof assistant COQ. The encoding has been done using two-level meta reasoning in Coq. KDT 4lin has been encoded as an object logic by inductively defining the set of modal linear logic formulas, the sequent relation on lists of these formulas, and some lemmas to work with lists.This modal linear logic has been argued to be a good candidate for epistemic applications. As examples some epistemic problems have been coded and proven in our encoding in Coq::the problem of logical omniscience and an epistemic puzzle: ’King, three wise men and five hats’

    The Relevant Logic E and Some Close Neighbours: A Reinterpretation

    Get PDF
    This paper has two aims. First, it sets out an interpretation of the relevant logic E of relevant entailment based on the theory of situated inference. Second, it uses this interpretation, together with Anderson and Belnap’s natural deduc- tion system for E, to generalise E to a range of other systems of strict relevant implication. Routley–Meyer ternary relation semantics for these systems are produced and completeness theorems are proven

    Proof Theory of Finite-valued Logics

    Get PDF
    The proof theory of many-valued systems has not been investigated to an extent comparable to the work done on axiomatizatbility of many-valued logics. Proof theory requires appropriate formalisms, such as sequent calculus, natural deduction, and tableaux for classical (and intuitionistic) logic. One particular method for systematically obtaining calculi for all finite-valued logics was invented independently by several researchers, with slight variations in design and presentation. The main aim of this report is to develop the proof theory of finite-valued first order logics in a general way, and to present some of the more important results in this area. In Systems covered are the resolution calculus, sequent calculus, tableaux, and natural deduction. This report is actually a template, from which all results can be specialized to particular logics

    On formal aspects of the epistemic approach to paraconsistency

    Get PDF
    This paper reviews the central points and presents some recent developments of the epistemic approach to paraconsistency in terms of the preservation of evidence. Two formal systems are surveyed, the basic logic of evidence (BLE) and the logic of evidence and truth (LET J ), designed to deal, respectively, with evidence and with evidence and truth. While BLE is equivalent to Nelson’s logic N4, it has been conceived for a different purpose. Adequate valuation semantics that provide decidability are given for both BLE and LET J . The meanings of the connectives of BLE and LET J , from the point of view of preservation of evidence, is explained with the aid of an inferential semantics. A formalization of the notion of evidence for BLE as proposed by M. Fitting is also reviewed here. As a novel result, the paper shows that LET J is semantically characterized through the so-called Fidel structures. Some opportunities for further research are also discussed

    Causality, Modality and Explanation

    Get PDF
    • …
    corecore