16 research outputs found

    Scaling up from greenhouse resistance to fitness in the field for a host of an emerging forest disease.

    Get PDF
    Forest systems are increasingly threatened by emergent, exotic diseases, yet management strategies for forest trees may be hindered by long generation times and scant background knowledge. We tested whether nursery disease resistance and growth traits have predictive value for the conservation of Notholithocarpus densiflorus, the host most susceptible to sudden oak death. We established three experimental populations to assess nursery growth and resistance to Phytophthora ramorum, and correlations between nursery-derived breeding values with seedling survival in a field disease trial. Estimates of nursery traits' heritability were low to moderate, with lowest estimates for resistance traits. Within the field trial, survival likelihood was increased in larger seedlings and decreased with the development of disease symptoms. The seed-parent family wide likelihood of survival was likewise correlated with family predictors for size and resistance to disease in 2nd year laboratory assays, though not resistance in 1st year leaf assays. We identified traits and seedling families with increased survivorship in planted tanoaks, and a framework to further identify seed parents favored for restoration. The additive genetic variation and seedling disease dynamics we describe hold promise to refine current disease models and expand the understanding of evolutionary dynamics of emergent infectious diseases in highly susceptible hosts

    Rapid adaptation to climate change

    No full text

    Genetic component of flammability variation in a Mediterranean shrub

    Get PDF
    Recurrent fires impose a strong selection pressure in many ecosystems worldwide. In such ecosystems, plant flammability is of paramount importance because it enhances population persistence, particularly in non‐resprouting species. Indeed, there is evidence of phenotypic divergence of flammability under different fire regimes. Our general hypothesis is that flammability‐enhancing traits are adaptive; here, we test whether they have a genetic component. To test this hypothesis, we used the postfire obligate seeder Ulex parviflorus from sites historically exposed to different fire recurrence. We associated molecular variation in potentially adaptive loci detected with a genomic scan (using AFLP markers) with individual phenotypic variability in flammability across fire regimes. We found that at least 42% of the phenotypic variation in flammability was explained by the genetic divergence in a subset of AFLP loci. In spite of generalized gene flow, the genetic variability was structured by differences in fire recurrence. Our results provide the first field evidence supporting that traits enhancing plant flammability have a genetic component and thus can be responding to natural selection driven by fire. These results highlight the importance of flammability as an adaptive trait in fire‐prone ecosystems

    Paths to Selection on Life History Loci in Different Natural Environments Across the Native Range of Arabidopsis thaliana

    Get PDF
    Selection on quantitative trait loci (QTL) may vary among natural environments due to differences in the genetic architecture of traits, environment-specific allelic effects or changes in the direction and magnitude of selection on specific traits. To dissect the environmental differences in selection on life history QTL across climatic regions, we grew a panel of interconnected recombinant inbred lines (RILs) of Arabidopsis thaliana in four field sites across its native European range. For each environment, we mapped QTL for growth, reproductive timing and development. Several QTL were pleiotropic across environments, three colocalizing with known functional polymorphisms in flowering time genes (CRY2, FRI and MAF2-5), but major QTL differed across field sites, showing conditional neutrality. We used structural equation models to trace selection paths from QTL to lifetime fitness in each environment. Only three QTL directly affected fruit number, measuring fitness. Most QTL had an indirect effect on fitness through their effect on bolting time or leaf length. Influence of life history traits on fitness differed dramatically across sites, resulting in different patterns of selection on reproductive timing and underlying QTL. In two oceanic field sites with high prereproductive mortality, QTL alleles contributing to early reproduction resulted in greater fruit production, conferring selective advantage, whereas alleles contributing to later reproduction resulted in larger size and higher fitness in a continental site. This demonstrates how environmental variation leads to change in both QTL effect sizes and direction of selection on traits, justifying the persistence of allelic polymorphism at life history QTL across the species range

    Distinguishing between recent balancing selection and incomplete sweep using deep neural networks

    Get PDF
    Balancing selection is an important adaptive mechanism underpinning a wide range of phenotypes. Despite its relevance, the detection of recent balancing selection from genomic data is challenging as its signatures are qualitatively similar to those left by ongoing positive selection. In this study, we developed and implemented two deep neural networks and tested their performance to predict loci under recent selection, either due to balancing selection or incomplete sweep, from population genomic data. Specifically, we generated forward-in-time simulations to train and test an artificial neural network (ANN) and a convolutional neural network (CNN). ANN received as input multiple summary statistics calculated on the locus of interest, while CNN was applied directly on the matrix of haplotypes. We found that both architectures have high accuracy to identify loci under recent selection. CNN generally outperformed ANN to distinguish between signals of balancing selection and incomplete sweep and was less affected by incorrect training data. We deployed both trained networks on neutral genomic regions in European populations and demonstrated a lower false-positive rate for CNN than ANN. We finally deployed CNN within the MEFV gene region and identified several common variants predicted to be under incomplete sweep in a European population. Notably, two of these variants are functional changes and could modulate susceptibility to familial Mediterranean fever, possibly as a consequence of past adaptation to pathogens. In conclusion, deep neural networks were able to characterize signals of selection on intermediate frequency variants, an analysis currently inaccessible by commonly used strategies

    Population genomics of rapidly invading lionfish in the Caribbean reveals signals of range expansion in the absence of spatial population structure.

    Get PDF
    © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Bors, E. K., Herrera, S., Morris, J. A., Jr., & Shank, T. M. Population genomics of rapidly invading lionfish in the Caribbean reveals signals of range expansion in the absence of spatial population structure. Ecology and Evolution, 9(6), (2019):3306-3320, doi:10.1002/ece3.4952.Range expansions driven by global change and species invasions may have significant genomic, evolutionary, and ecological implications. During range expansions, strong genetic drift characterized by repeated founder events can result in decreased genetic diversity with increased distance from the center of the historic range, or the point of invasion. The invasion of the Indo‐Pacific lionfish, Pterois volitans, into waters off the US East Coast, Gulf of Mexico, and Caribbean Sea provides a natural system to study rapid range expansion in an invasive marine fish with high dispersal capabilities. We report results from 12,759 single nucleotide polymorphism loci sequenced by restriction enzyme‐associated DNA sequencing for nine P. volitans sampling areas in the invaded range, including Florida and other sites throughout the Caribbean, as well as mitochondrial control region D‐loop data. Analyses revealed low to no spatially explicit metapopulation genetic structure, which is partly consistent with previous finding of little structure within ocean basins, but partly divergent from initial reports of between‐basin structure. Genetic diversity, however, was not homogeneous across all sampled sites. Patterns of genetic diversity correlate with invasion pathway. Observed heterozygosity, averaged across all loci within a population, decreases with distance from Florida while expected heterozygosity is mostly constant in sampled populations, indicating population genetic disequilibrium correlated with distance from the point of invasion. Using an FST outlier analysis and a Bayesian environmental correlation analysis, we identified 256 and 616 loci, respectively, that could be experiencing selection or genetic drift. Of these, 24 loci were shared between the two methods.We thank the many participants of the Gulf and Caribbean Fisheries Institute for providing lionfish samples from around the Caribbean region, as well as Dr. Bernard Castillo at the University of the Virgin Islands and Kristian Rogers at the Biscayne Bay National Park. We would like to acknowledge Alex Bogdanoff at NOAA, Beaufort NC, for assistance with sample acquisition; Camrin Braun at WHOI, for assistance with the calculation of oceanic distances between sites; Dr. Tom Schultz at Duke Marine Lab and Dr. Margaret Hunter at USGS for discussions concerning ongoing population genetic projects; and Jack Cook at the WHOI Graphics department for his assistance in generating maps of the study area. We would like to extend a special thank you to Dr. John Wakeley of Harvard University for assistance in the interpretation of data. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. 1122374. Sequencing funding was provided in part by the PADI Foundation Grant No. 14904. Additional research support was provided by the Woods Hole Oceanographic Institution (WHOI) Ocean Ventures Fund, the Coastal Ocean Institute at WHOI, the National Science Foundation (OCE‐1131620 to TMS), and the James Education Fund for Ocean Exploration within the Ocean Exploration Institute at WHOI. Publication of this paper was supported, in part, by the Henry Mastin Graduate Student Fund administered by the Oregon State University Department of Fisheries and Wildlife. Finally, we sincerely thank the reviewers and editors who helped to strengthen this manuscript

    Can we understand modern humans without considering pathogens?

    Get PDF
    Throughout our evolutionary history, humankind has always lived in contact with large numbers of pathogens. Some cultural traits, such as sedentarization and animal domestication, have considerably increased new parasitic contacts and epidemic transitions. Here, we review the various phenotypic traits that have been proposed to be affected by the highly parasitic human environment, including fertility, birth weight, fluctuating asymmetry, body odours, food recipes, sexual behaviour, pregnancy sickness, language, religion and intellectual quotient. We also discuss how such knowledge is important to understanding several aspects of the current problems faced by humanity in our changing world and to predicting the long-term consequences of parasite eradication policies on our health and well-being. The study of the evolutionary interactions between humans and parasites is a burgeoning and most promising field, as demonstrated by the recent increasing popularity of Darwinian medicine

    Habitat-mediated size selection in endangered Atlantic salmon fry: selectional restoration assessment

    Get PDF
    Preservation of adaptive variation is a top priority of many species restoration programs, but most restoration activities are conducted without direct knowledge of selection that might foster or impair adaptation and restoration goals. In this study, we quantified geographic variation in selection on fry size of endangered Atlantic salmon (Salmo salar) during the 6-week period immediately following stocking in the wild. We also used a model selection approach to assess whether habitat variables influence patterns of such selection. We found evidence for significant size-selection in five out of six selection trials. Interestingly, the strength and pattern of selection varied extensively among sites, and model selection suggested that this variation in phenotypic selection was related to geographic variation in the presence of large woody debris and the slope of the stream gradient. The strong selection differentials we observed should be a concern for endangered salmon restoration, whether they reflect natural processes and an opportunity to maintain adaptation, or an indicator of the potentially deleterious phenotypic consequences of hatchery practices

    Newly rare or newly common: evolutionary feedbacks through changes in population density and relative species abundance, and their management implications

    Get PDF
    Environmental management typically seeks to increase or maintain the population sizes of desirable species and to decrease population sizes of undesirable pests, pathogens, or invaders. With changes in population size come long-recognized changes in ecological processes that act in a density-dependent fashion. While the ecological effects of density dependence have been well studied, the evolutionary effects of changes in population size, via changes in ecological interactions with community members, are underappreciated. Here, we provide examples of changing selective pressures on, or evolution in, species as a result of changes in either density of conspecifics or changes in the frequency of heterospecific versus conspecific interactions. We also discuss the management implications of such evolutionary responses in species that have experienced rapid increases or decreases in density caused by human actions

    Evolution of plant–pollinator mutualisms in response to climate change

    Get PDF
    Climate change has the potential to desynchronize the phenologies of interdependent species, with potentially catastrophic effects on mutualist populations. Phenologies can evolve, but the role of evolution in the response of mutualisms to climate change is poorly understood. We developed a model that explicitly considers both the evolution and the population dynamics of a plant–pollinator mutualism under climate change. How the populations evolve, and thus whether the populations and the mutualism persist, depends not only on the rate of climate change but also on the densities and phenologies of other species in the community. Abundant alternative mutualist partners with broad temporal distributions can make a mutualism more robust to climate change, while abundant alternative partners with narrow temporal distributions can make a mutualism less robust. How community composition and the rate of climate change affect the persistence of mutualisms is mediated by two-species Allee thresholds. Understanding these thresholds will help researchers to identify those mutualisms at highest risk owing to climate change
    corecore