96,802 research outputs found

    Normal forms and normal theories in conditional rewriting

    Full text link
    this is the author’s version of a work that was accepted for publication in Journal of Logical and Algebraic Methods in Programming. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Journal of Logical and Algebraic Methods in Programming vol. 85 (2016) DOI 10.1016/j.jlamp.2015.06.001We present several new concepts and results on conditional term rewriting within the general framework of order-sorted rewrite theories (OSRTs), which support types, subtypes and rewriting modulo axioms, and contains the more restricted framework of conditional term rewriting systems (CTRSs) as a special case. The concepts shed light on several subtle issues about conditional rewriting and conditional termination. We point out that the notions of irreducible term and of normal form, which coincide for unconditional rewriting, have been conflated for conditional rewriting but are in fact totally different notions. Normal form is a stronger concept. We call any rewrite theory where all irreducible terms are normal forms a normal theory. We argue that normality is essential to have good executability and computability properties. Therefore we call all other theories abnormal, freaks of nature to be avoided. The distinction between irreducible terms and normal forms helps in clarifying various notions of strong and weak termination. We show that abnormal theories can be terminating in various, equally abnormal ways; and argue that any computationally meaningful notion of strong or weak conditional termination should be a property of normal theories. In particular we define the notion of a weakly operationally terminating (or weakly normalizing) OSRT, discuss several evaluation mechanisms to compute normal forms in such theories, and investigate general conditions under which the rewriting-based operational semantics and the initial algebra semantics of a confluent, weakly normalizing OSRT coincide thanks to a notion of canonical term algebra. Finally, we investigate appropriate conditions and proof methods to ensure that a rewrite theory is normal; and characterize the stronger property of a rewrite theory being operationally terminating in terms of a natural generalization of the notion of quasidecreasing order. (C) 2015 Elsevier Inc. All rights reserved.We thank the anonymous referees for their constructive criticism and helpful comments. This work has been partially supported by NSF grant CNS 13-19109. Salvador Lucas' research was developed during a sabbatical year at UIUC and was also supported by the EU (FEDER), Spanish MINECO projects TIN2010-21062-C02-02 and TIN 2013-45732-C4-1-P, and GV grant BEST/2014/026 and project PROMETEO/2011/052.Lucas Alba, S.; Meseguer, J. (2016). Normal forms and normal theories in conditional rewriting. Journal of Logical and Algebraic Methods in Programming. 85(1):67-97. https://doi.org/10.1016/j.jlamp.2015.06.001S679785

    Automatically Proving and Disproving Feasibility Conditions

    Full text link
    [EN] In the realm of term rewriting, given terms s and t, a reachability condition s>>t is called feasible if there is a substitution O such that O(s) rewrites into O(t) in zero or more steps; otherwise, it is called infeasible. Checking infeasibility of (sequences of) reachability conditions is important in the analysis of computational properties of rewrite systems like confluence or (operational) termination. In this paper, we generalize this notion of feasibility to arbitrary n-ary relations on terms defined by first-order theories. In this way, properties of computational systems whose operational semantics can be given as a first-order theory can be investigated. We introduce a framework for proving feasibility/infeasibility, and a new tool, infChecker, which implements it.Supported by EU (FEDER), and projects RTI2018-094403-B-C32, PROMETEO/2019/098, and SP20180225. Also by INCIBE program "Ayudas para la excelencia de los equipos de investigación avanzada en ciberseguridad" (Raul Gutiérrez).Gutiérrez Gil, R.; Lucas Alba, S. (2020). Automatically Proving and Disproving Feasibility Conditions. Springer Nature. 416-435. https://doi.org/10.1007/978-3-030-51054-1_27S416435Andrianarivelo, N., Réty, P.: Over-approximating terms reachable by context-sensitive rewriting. In: Bojańczyk, M., Lasota, S., Potapov, I. (eds.) RP 2015. LNCS, vol. 9328, pp. 128–139. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24537-9_12Dershowitz, N.: Termination of rewriting. J. Symb. Comput. 3(1/2), 69–116 (1987). https://doi.org/10.1016/S0747-7171(87)80022-6Giesl, J., Thiemann, R., Schneider-Kamp, P., Falke, S.: Mechanizing and improving dependency pairs. J. Autom. Reasoning 37(3), 155–203 (2006). https://doi.org/10.1007/s10817-006-9057-7Goguen, J.A., Meseguer, J.: Models and equality for logical programming. In: Ehrig, H., Kowalski, R., Levi, G., Montanari, U. (eds.) TAPSOFT 1987. LNCS, vol. 250, pp. 1–22. Springer, Heidelberg (1987). https://doi.org/10.1007/BFb0014969Gutiérrez, R., Lucas, S.: Automatic generation of logical models with AGES. In: Fontaine, P. (ed.) CADE 2019. LNCS (LNAI), vol. 11716, pp. 287–299. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29436-6_17Kojima, Y., Sakai, M.: Innermost reachability and context sensitive reachability properties are decidable for linear right-shallow term rewriting systems. In: Voronkov, A. (ed.) RTA 2008. LNCS, vol. 5117, pp. 187–201. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70590-1_13Kojima, Y., Sakai, M., Nishida, N., Kusakari, K., Sakabe, T.: Context-sensitive innermost reachability is decidable for linear right-shallow term rewriting systems. Inf. Media Technol. 4(4), 802–814 (2009)Kojima, Y., Sakai, M., Nishida, N., Kusakari, K., Sakabe, T.: Decidability of reachability for right-shallow context-sensitive term rewriting systems. IPSJ Online Trans. 4, 192–216 (2011)Lucas, S.: Analysis of rewriting-based systems as first-order theories. In: Fioravanti, F., Gallagher, J.P. (eds.) LOPSTR 2017. LNCS, vol. 10855, pp. 180–197. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94460-9_11Lucas, S.: Context-sensitive computations in functional and functional logic programs. J. Funct. Logic Program. 1998(1) (1998). http://danae.uni-muenster.de/lehre/kuchen/JFLP/articles/1998/A98-01/A98-01.htmlLucas, S.: Proving semantic properties as first-order satisfiability. Artif. Intell. 277 (2019). https://doi.org/10.1016/j.artint.2019.103174Lucas, S.: Using well-founded relations for proving operational termination. J. Autom. Reasoning 64(2), 167–195 (2019). https://doi.org/10.1007/s10817-019-09514-2Lucas, S., Gutiérrez, R.: Use of logical models for proving infeasibility in term rewriting. Inf. Process. Lett. 136, 90–95 (2018). https://doi.org/10.1016/j.ipl.2018.04.002Lucas, S., Marché, C., Meseguer, J.: Operational termination of conditional term rewriting systems. Inf. Process. Lett. 95(4), 446–453 (2005). https://doi.org/10.1016/j.ipl.2005.05.002Lucas, S., Meseguer, J.: Proving operational termination of declarative programs in general logics. In: Chitil, O., King, A., Danvy, O. (eds.) Proceedings of the 16th International Symposium on Principles and Practice of Declarative Programming, Kent, Canterbury, United Kingdom, 8–10 September 2014, pp. 111–122. ACM (2014). https://doi.org/10.1145/2643135.2643152Lucas, S., Meseguer, J., Gutiérrez, R.: The 2D dependency pair framework for conditional rewrite systems. Part I: definition and basic processors. J. Comput. Syst. Sci. 96, 74–106 (2018). https://doi.org/10.1016/j.jcss.2018.04.002Lucas, S., Meseguer, J., Gutiérrez, R.: The 2D dependency pair framework for conditional rewrite systems—Part II: advanced processors and implementation techniques. J. Autom. Reasoning (2020, in press)McCune, W.: Prover9 and Mace4. https://www.cs.unm.edu/~mccune/mace4/Meßner, F., Sternagel, C.: nonreach – a tool for nonreachability analysis. In: Vojnar, T., Zhang, L. (eds.) TACAS 2019. LNCS, vol. 11427, pp. 337–343. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17462-0_19Middeldorp, A., Nagele, J., Shintani, K.: Confluence competition 2019. In: Beyer, D., Huisman, M., Kordon, F., Steffen, B. (eds.) TACAS 2019. LNCS, vol. 11429, pp. 25–40. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17502-3_2Nishida, N., Maeda, Y.: Narrowing trees for syntactically deterministic conditional term rewriting systems. In: Kirchner, H. (ed.) Proceedings of the 3rd International Conference on Formal Structures for Computation and Deduction. FSCD 2018. Leibniz International Proceedings in Informatics (LIPIcs), vol. 108, pp. 26:1–26:20. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2018). https://doi.org/10.4230/LIPIcs.FSCD.2018.26Ohlebusch, E.: Advanced Topics in Term Rewriting. Springer, Heidelberg (2002). http://www.springer.com/computer/swe/book/978-0-387-95250-5Prawitz, D.: Natural Deduction: A Proof-Theoretical Study. Dover, New York (2006)Sternagel, C., Sternagel, T., Middeldorp, A.: CoCo 2018 Participant: ConCon 1.5. In: Felgenhauer, B., Simonsen, J. (eds.) Proceedings of the 7th International Workshop on Confluence. IWC 2018, p. 66 (2018). http://cl-informatik.uibk.ac.at/events/iwc-2018/Sternagel, C., Yamada, A.: Reachability analysis for termination and confluence of rewriting. In: Vojnar, T., Zhang, L. (eds.) TACAS 2019. LNCS, vol. 11427, pp. 262–278. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17462-0_15Winkler, S., Moser, G.: MædMax: a maximal ordered completion tool. In: Galmiche, D., Schulz, S., Sebastiani, R. (eds.) IJCAR 2018. LNCS (LNAI), vol. 10900, pp. 472–480. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94205-6_3

    Using Well-Founded Relations for Proving Operational Termination

    Full text link
    [EN] In this paper, we study operational termination, a proof theoretical notion for capturing the termination behavior of computational systems. We prove that operational termination can be characterized at different levels by means of well- founded relations on specific formulas which can be obtained from the considered system. We show how to obtain such well-founded relations from logical models which can be automatically generated using existing tools.Partially supported by the EU (FEDER), Projects TIN2015-69175-C4-1-R, and GV PROMETEOII/2015/013.Lucas Alba, S. (2020). Using Well-Founded Relations for Proving Operational Termination. Journal of Automated Reasoning. 64(2):167-195. https://doi.org/10.1007/s10817-019-09514-2S167195642Alarcón, B., Gutiérrez, R., Lucas, S., Navarro-Marset, R.: Proving termination properties with MU-TERM. In: Proceedings of AMAST’10, LNCS, vol. 6486, pp. 201–208, Springer (2011)Aguirre, L., Martí-Oliet, N., Palomino, M., Pita, I.: Sentence-normalized conditional narrowing modulo in rewriting logic and Maude. J. Automat. Reason. 60(4), 421–463 (2018)Arts, T., Giesl, J.: Proving innermost normalisation automatically. In: Proceedings of RTA’97, LNCS, vol. 1232, pp. 157–171, Springer, Berlin (1997)Arts, T., Giesl, J.: Termination of term rewriting using dependency pairs. Theor. Comput. Sci. 236(1–2), 133–178 (2000)Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press, Cambridge (1998)Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Talcott, C.: All About Maude—A High-Performance Logical Framework. LNCS, vol. 4350, Springer (2007)Durán, F., Lucas, S., Meseguer, J.: Methods for proving termination of rewriting-based programming languages by transformation. Electron. Notes Theor. Comput. Sci. 248, 93–113 (2009)Durán, F., Lucas, S., Marché, C., Meseguer, J., Urbain, X.: Proving operational termination of membership equational programs. High. Order Symb. Comput. 21(1–2), 59–88 (2008)Falke, S., Kapur, D.: Operational termination of conditional rewriting with built-in numbers and semantic data structures. Electron. Notes Theor. Comput. Sci. 237, 75–90 (2009)Floyd, R.W.: Assigning meanings to programs. Math. Asp. Comput. Sci. 19, 19–32 (1967)Giesl, J., Arts, T.: Verification of Erlang processes by dependency pairs. Appl. Algebra Eng. Commun. Comput. 12, 39–72 (2001)Giesl, J., Thiemann, R., Schneider-Kamp, P., Falke, S.: Mechanizing and improving dependency pairs. J. Autom. Reason. 37(3), 155–203 (2006)Giesl, J., Thiemann, R., Schneider-Kamp, P.: The dependency pair framework: combining techniques for automated termination proofs. In: Proceedings of LPAR’04, LNAI, vol. 3452, pp. 301–331 (2004)Giesl, J., Schneider-Kamp, P., Thiemann, R.: AProVE 1.2: automatic termination proofs in the dependency pair framework. In: Proceedings of IJCAR’06, LNAI, vol. 4130, pp. 281–286 (2006)Goguen, J., Meseguer, J.: Models and equality for logical programming. In: Proceedings of TAPSOFT’87, LNCS, vol. 250, pp. 1–22 (1987)Goguen, J., Meseguer, J.: Order-sorted algebra I: equational deduction for multiple inheritance, overloading, exceptions and partial operations. Theor. Comput. Sci. 105, 217–273 (1992)Gutiérrez, R., Lucas, S., Reinoso, P.: A tool for the automatic generation of logical models of order-sorted first-order theories. In: Proceedings of PROLE’16, pp. 215–230 (2016)Hodges, W.: Model Theory. Cambridge University Press, Cambridge (1993)Korp, M., Sternagel, C., Zankl, H., Middeldorp, A.: Tyrolean termination tool 2. In: Proceedings of RTA 2009, LNCS, vol. 5595, pp. 295–304 (2009)Lalement, R.: Computation as Logic. Masson-Prentice Hall International, Paris (1993)Lucas, S.: Context-sensitive rewriting strategies. Inf. Comput. 178(1), 294–343 (2002)Lucas, S.: Use of logical models for proving operational termination in general logics. In: Selected Papers from WRLA’16, LNCS, vol. 9942, pp. 1–21 (2016)Lucas, S.: Directions of operational termination. In: Proceedings of PROLE’18. http://hdl.handle.net/11705/PROLE/2018/009 (2018). Accessed 9 Feb 2019Lucas, S., Gutiérrez, R.: Automatic synthesis of logical models for order-sorted first-order theories. J. Autom. Reason. 60(4), 465–501 (2018)Lucas, S., Gutiérrez, R.: Use of logical models for proving infeasibility in term rewriting. Inf. Process. Lett. 136, 90–95 (2018)Lucas, S., Marché, C., Meseguer, J.: Operational termination of conditional term rewriting systems. Inf. Process. Lett. 95, 446–453 (2005)Lucas, S., Meseguer, J.: Dependency pairs for proving termination properties of conditional term rewriting systems. J. Log. Algebr. Methods Program. 86, 236–268 (2017)Lucas, S., Meseguer, J.: Proving operational termination of declarative programs in general logics. In: Proceedings of PPDP’14, pp. 111–122. ACM Digital Library (2014)McCune, W.: Prover9 & Mace4. http://www.cs.unm.edu/~mccune/prover9/ (2005–2010). Accessed 9 Feb 2019Mendelson, E.: Introduction to Mathematical Logic, 4th edn. Chapman & Hall, London (1997)Meseguer, J.: General logics. In: Logic Colloquium’87, pp. 275–329 (1989)O’Donnell, M.J.: Equational Logic as a Programming Language. The MIT Press, Cambridge (1985)Ohlebusch, E.: Advanced Topics in Term Rewriting. Springer, Berlin (2002)Prawitz, D.: Natural Deduction. A Proof Theoretical Study. Almqvist & Wiksell, 1965. Reprinted by Dover Publications (2006)Rosu, G., Stefanescu, A., Ciobaca, S., Moore, B.M.: One-path reachability logic. In: Proceedings of LICS 2013, pp. 358–367. IEEE Press (2013)Shapiro, S.: Foundations Without Foundationalism: A Case for Second-Order Logic. Clarendon Press, Oxford (1991)Schernhammer, F., Gramlich, B.: Characterizing and proving operational termination of deterministic conditional term rewriting systems. J. Log. Algebr. Program. 79, 659–688 (2010)Serbanuta, T., Rosu, G.: Computationally equivalent elimination of conditions. In: Proceedings of RTA’06, LNCS, vol. 4098, pp. 19–34. Springer, Berlin (2006)Turing, A.M.: Checking a large routine. In: Report of a Conference on High Speed Automatic Calculating Machines, Univ. Math. Lab., Cambridge, pp. 67–69 (1949

    Towards 3-Dimensional Rewriting Theory

    Full text link
    String rewriting systems have proved very useful to study monoids. In good cases, they give finite presentations of monoids, allowing computations on those and their manipulation by a computer. Even better, when the presentation is confluent and terminating, they provide one with a notion of canonical representative of the elements of the presented monoid. Polygraphs are a higher-dimensional generalization of this notion of presentation, from the setting of monoids to the much more general setting of n-categories. One of the main purposes of this article is to give a progressive introduction to the notion of higher-dimensional rewriting system provided by polygraphs, and describe its links with classical rewriting theory, string and term rewriting systems in particular. After introducing the general setting, we will be interested in proving local confluence for polygraphs presenting 2-categories and introduce a framework in which a finite 3-dimensional rewriting system admits a finite number of critical pairs

    Polygraphs for termination of left-linear term rewriting systems

    Get PDF
    We present a methodology for proving termination of left-linear term rewriting systems (TRSs) by using Albert Burroni's polygraphs, a kind of rewriting systems on algebraic circuits. We translate the considered TRS into a polygraph of minimal size whose termination is proven with a polygraphic interpretation, then we get back the property on the TRS. We recall Yves Lafont's general translation of TRSs into polygraphs and known links between their termination properties. We give several conditions on the original TRS, including being a first-order functional program, that ensure that we can reduce the size of the polygraphic translation. We also prove sufficient conditions on the polygraphic interpretations of a minimal translation to imply termination of the original TRS. Examples are given to compare this method with usual polynomial interpretations.Comment: 15 page

    Termination orders for 3-dimensional rewriting

    Get PDF
    This paper studies 3-polygraphs as a framework for rewriting on two-dimensional words. A translation of term rewriting systems into 3-polygraphs with explicit resource management is given, and the respective computational properties of each system are studied. Finally, a convergent 3-polygraph for the (commutative) theory of Z/2Z-vector spaces is given. In order to prove these results, it is explained how to craft a class of termination orders for 3-polygraphs.Comment: 30 pages, 35 figure

    Maude: specification and programming in rewriting logic

    Get PDF
    Maude is a high-level language and a high-performance system supporting executable specification and declarative programming in rewriting logic. Since rewriting logic contains equational logic, Maude also supports equational specification and programming in its sublanguage of functional modules and theories. The underlying equational logic chosen for Maude is membership equational logic, that has sorts, subsorts, operator overloading, and partiality definable by membership and equality conditions. Rewriting logic is reflective, in the sense of being able to express its own metalevel at the object level. Reflection is systematically exploited in Maude endowing the language with powerful metaprogramming capabilities, including both user-definable module operations and declarative strategies to guide the deduction process. This paper explains and illustrates with examples the main concepts of Maude's language design, including its underlying logic, functional, system and object-oriented modules, as well as parameterized modules, theories, and views. We also explain how Maude supports reflection, metaprogramming and internal strategies. The paper outlines the principles underlying the Maude system implementation, including its semicompilation techniques. We conclude with some remarks about applications, work on a formal environment for Maude, and a mobile language extension of Maude
    • …
    corecore