135,955 research outputs found

    Meaning postulates and deference

    Get PDF
    Fodor (1998) argues that most lexical concepts have no internal structure. He rejects what he calls Inferential Role Semantics (IRS), the view that primitive concepts are constituted by their inferential relations, on the grounds that this violates the compositionality constraint and leads to an unacceptable form of holism. In rejecting IRS, Fodor must also reject meaning postulates. I argue, contra Fodor, that meaning postulates must be retained, but that when suitably constrained they are not susceptible to his arguments against IRS. This has important implications for the view that certain of our concepts are deferential. A consequence of the arguments I present is that deference is relegated to a relatively minor role in what Sperber (1997) refers to as reflective concepts; deference has no important role to play in the vast majority of our intuitive concepts

    Deduction over Mixed-Level Logic Representations for Text Passage Retrieval

    Full text link
    A system is described that uses a mixed-level representation of (part of) meaning of natural language documents (based on standard Horn Clause Logic) and a variable-depth search strategy that distinguishes between the different levels of abstraction in the knowledge representation to locate specific passages in the documents. Mixed-level representations as well as variable-depth search strategies are applicable in fields outside that of NLP.Comment: 8 pages, Proceedings of the Eighth International Conference on Tools with Artificial Intelligence (TAI'96), Los Alamitos C

    Understanding Science Through Knowledge Organizers: An Introduction

    Get PDF
    We propose, in this paper, a teaching program based on a grammar of scientific language borrowed mostly from the area of knowledge representation in computer science and logic. The paper introduces an operationizable framework for understanding knowledge using knowledge representation (KR) methodology. We start with organizing concepts based on their cognitive function, followed by assigning valid and authentic semantic relations to the concepts. We propose that in science education, students can understand better if they organize their knowledge using the KR principles. The process, we claim, can help them to align their conceptual framework with that of experts which we assume is the goal of science education

    What does semantic tiling of the cortex tell us about semantics?

    Get PDF
    Recent use of voxel-wise modeling in cognitive neuroscience suggests that semantic maps tile the cortex. Although this impressive research establishes distributed cortical areas active during the conceptual processing that underlies semantics, it tells us little about the nature of this processing. While mapping concepts between Marr's computational and implementation levels to support neural encoding and decoding, this approach ignores Marr's algorithmic level, central for understanding the mechanisms that implement cognition, in general, and conceptual processing, in particular. Following decades of research in cognitive science and neuroscience, what do we know so far about the representation and processing mechanisms that implement conceptual abilities? Most basically, much is known about the mechanisms associated with: (1) features and frame representations, (2) grounded, abstract, and linguistic representations, (3) knowledge-based inference, (4) concept composition, and (5) conceptual flexibility. Rather than explaining these fundamental representation and processing mechanisms, semantic tiles simply provide a trace of their activity over a relatively short time period within a specific learning context. Establishing the mechanisms that implement conceptual processing in the brain will require more than mapping it to cortical (and sub-cortical) activity, with process models from cognitive science likely to play central roles in specifying the intervening mechanisms. More generally, neuroscience will not achieve its basic goals until it establishes algorithmic-level mechanisms that contribute essential explanations to how the brain works, going beyond simply establishing the brain areas that respond to various task conditions

    A Type-coherent, Expressive Representation as an Initial Step to Language Understanding

    Full text link
    A growing interest in tasks involving language understanding by the NLP community has led to the need for effective semantic parsing and inference. Modern NLP systems use semantic representations that do not quite fulfill the nuanced needs for language understanding: adequately modeling language semantics, enabling general inferences, and being accurately recoverable. This document describes underspecified logical forms (ULF) for Episodic Logic (EL), which is an initial form for a semantic representation that balances these needs. ULFs fully resolve the semantic type structure while leaving issues such as quantifier scope, word sense, and anaphora unresolved; they provide a starting point for further resolution into EL, and enable certain structural inferences without further resolution. This document also presents preliminary results of creating a hand-annotated corpus of ULFs for the purpose of training a precise ULF parser, showing a three-person pairwise interannotator agreement of 0.88 on confident annotations. We hypothesize that a divide-and-conquer approach to semantic parsing starting with derivation of ULFs will lead to semantic analyses that do justice to subtle aspects of linguistic meaning, and will enable construction of more accurate semantic parsers.Comment: Accepted for publication at The 13th International Conference on Computational Semantics (IWCS 2019

    Making AI Meaningful Again

    Get PDF
    Artificial intelligence (AI) research enjoyed an initial period of enthusiasm in the 1970s and 80s. But this enthusiasm was tempered by a long interlude of frustration when genuinely useful AI applications failed to be forthcoming. Today, we are experiencing once again a period of enthusiasm, fired above all by the successes of the technology of deep neural networks or deep machine learning. In this paper we draw attention to what we take to be serious problems underlying current views of artificial intelligence encouraged by these successes, especially in the domain of language processing. We then show an alternative approach to language-centric AI, in which we identify a role for philosophy
    • …
    corecore