775,932 research outputs found

    Using Natural Language as Knowledge Representation in an Intelligent Tutoring System

    Get PDF
    Knowledge used in an intelligent tutoring system to teach students is usually acquired from authors who are experts in the domain. A problem is that they cannot directly add and update knowledge if they don’t learn formal language used in the system. Using natural language to represent knowledge can allow authors to update knowledge easily. This thesis presents a new approach to use unconstrained natural language as knowledge representation for a physics tutoring system so that non-programmers can add knowledge without learning a new knowledge representation. This approach allows domain experts to add not only problem statements, but also background knowledge such as commonsense and domain knowledge including principles in natural language. Rather than translating into a formal language, natural language representation is directly used in inference so that domain experts can understand the internal process, detect knowledge bugs, and revise the knowledgebase easily. In authoring task studies with the new system based on this approach, it was shown that the size of added knowledge was small enough for a domain expert to add, and converged to near zero as more problems were added in one mental model test. After entering the no-new-knowledge state in the test, 5 out of 13 problems (38 percent) were automatically solved by the system without adding new knowledge

    FrameNet CNL: a Knowledge Representation and Information Extraction Language

    Full text link
    The paper presents a FrameNet-based information extraction and knowledge representation framework, called FrameNet-CNL. The framework is used on natural language documents and represents the extracted knowledge in a tailor-made Frame-ontology from which unambiguous FrameNet-CNL paraphrase text can be generated automatically in multiple languages. This approach brings together the fields of information extraction and CNL, because a source text can be considered belonging to FrameNet-CNL, if information extraction parser produces the correct knowledge representation as a result. We describe a state-of-the-art information extraction parser used by a national news agency and speculate that FrameNet-CNL eventually could shape the natural language subset used for writing the newswire articles.Comment: CNL-2014 camera-ready version. The final publication is available at link.springer.co

    Knowledge Extraction from Natural Language Requirements into a Semantic Relation Graph

    Get PDF
    Knowledge extraction and representation aims to identify information and to transform it into a machine-readable format. Knowledge representations support Information Retrieval tasks such as searching for single statements, documents, or metadata. Requirements specifications of complex systems such as automotive software systems are usually divided into different subsystem specifications. Nevertheless, there are semantic relations between individual documents of the separated subsystems, which have to be considered in further processes (e.g. dependencies). If requirements engineers or other developers are not aware of these relations, this can lead to inconsistencies or malfunctions of the overall system. Therefore, there is a strong need for tool support in order to detects semantic relations in a set of large natural language requirements specifications. In this work we present a knowledge extraction approach based on an explicit knowledge representation of the content of natural language requirements as a semantic relation graph. Our approach is fully automated and includes an NLP pipeline to transform unrestricted natural language requirements into a graph. We split the natural language into different parts and relate them to each other based on their semantic relation. In addition to semantic relations, other relationships can also be included in the graph. We envision to use a semantic search algorithm like spreading activation to allow users to search different semantic relations in the graph

    Disjunctive Logic Programs with Inheritance

    Full text link
    The paper proposes a new knowledge representation language, called DLP<, which extends disjunctive logic programming (with strong negation) by inheritance. The addition of inheritance enhances the knowledge modeling features of the language providing a natural representation of default reasoning with exceptions. A declarative model-theoretic semantics of DLP< is provided, which is shown to generalize the Answer Set Semantics of disjunctive logic programs. The knowledge modeling features of the language are illustrated by encoding classical nonmonotonic problems in DLP<. The complexity of DLP< is analyzed, proving that inheritance does not cause any computational overhead, as reasoning in DLP< has exactly the same complexity as reasoning in disjunctive logic programming. This is confirmed by the existence of an efficient translation from DLP< to plain disjunctive logic programming. Using this translation, an advanced KR system supporting the DLP< language has been implemented on top of the DLV system and has subsequently been integrated into DLV.Comment: 28 pages; will be published in Theory and Practice of Logic Programmin
    • …
    corecore