14,337 research outputs found

    Answering Complex Questions by Joining Multi-Document Evidence with Quasi Knowledge Graphs

    No full text
    Direct answering of questions that involve multiple entities and relations is a challenge for text-based QA. This problem is most pronounced when answers can be found only by joining evidence from multiple documents. Curated knowledge graphs (KGs) may yield good answers, but are limited by their inherent incompleteness and potential staleness. This paper presents QUEST, a method that can answer complex questions directly from textual sources on-the-fly, by computing similarity joins over partial results from different documents. Our method is completely unsupervised, avoiding training-data bottlenecks and being able to cope with rapidly evolving ad hoc topics and formulation style in user questions. QUEST builds a noisy quasi KG with node and edge weights, consisting of dynamically retrieved entity names and relational phrases. It augments this graph with types and semantic alignments, and computes the best answers by an algorithm for Group Steiner Trees. We evaluate QUEST on benchmarks of complex questions, and show that it substantially outperforms state-of-the-art baselines

    Strong Baselines for Simple Question Answering over Knowledge Graphs with and without Neural Networks

    Full text link
    We examine the problem of question answering over knowledge graphs, focusing on simple questions that can be answered by the lookup of a single fact. Adopting a straightforward decomposition of the problem into entity detection, entity linking, relation prediction, and evidence combination, we explore simple yet strong baselines. On the popular SimpleQuestions dataset, we find that basic LSTMs and GRUs plus a few heuristics yield accuracies that approach the state of the art, and techniques that do not use neural networks also perform reasonably well. These results show that gains from sophisticated deep learning techniques proposed in the literature are quite modest and that some previous models exhibit unnecessary complexity.Comment: Published in NAACL HLT 201

    Joint Video and Text Parsing for Understanding Events and Answering Queries

    Full text link
    We propose a framework for parsing video and text jointly for understanding events and answering user queries. Our framework produces a parse graph that represents the compositional structures of spatial information (objects and scenes), temporal information (actions and events) and causal information (causalities between events and fluents) in the video and text. The knowledge representation of our framework is based on a spatial-temporal-causal And-Or graph (S/T/C-AOG), which jointly models possible hierarchical compositions of objects, scenes and events as well as their interactions and mutual contexts, and specifies the prior probabilistic distribution of the parse graphs. We present a probabilistic generative model for joint parsing that captures the relations between the input video/text, their corresponding parse graphs and the joint parse graph. Based on the probabilistic model, we propose a joint parsing system consisting of three modules: video parsing, text parsing and joint inference. Video parsing and text parsing produce two parse graphs from the input video and text respectively. The joint inference module produces a joint parse graph by performing matching, deduction and revision on the video and text parse graphs. The proposed framework has the following objectives: Firstly, we aim at deep semantic parsing of video and text that goes beyond the traditional bag-of-words approaches; Secondly, we perform parsing and reasoning across the spatial, temporal and causal dimensions based on the joint S/T/C-AOG representation; Thirdly, we show that deep joint parsing facilitates subsequent applications such as generating narrative text descriptions and answering queries in the forms of who, what, when, where and why. We empirically evaluated our system based on comparison against ground-truth as well as accuracy of query answering and obtained satisfactory results

    Out of the Box: Reasoning with Graph Convolution Nets for Factual Visual Question Answering

    Full text link
    Accurately answering a question about a given image requires combining observations with general knowledge. While this is effortless for humans, reasoning with general knowledge remains an algorithmic challenge. To advance research in this direction a novel `fact-based' visual question answering (FVQA) task has been introduced recently along with a large set of curated facts which link two entities, i.e., two possible answers, via a relation. Given a question-image pair, deep network techniques have been employed to successively reduce the large set of facts until one of the two entities of the final remaining fact is predicted as the answer. We observe that a successive process which considers one fact at a time to form a local decision is sub-optimal. Instead, we develop an entity graph and use a graph convolutional network to `reason' about the correct answer by jointly considering all entities. We show on the challenging FVQA dataset that this leads to an improvement in accuracy of around 7% compared to the state of the art.Comment: Accepted to NIPS 201

    Cognitive Graph for Multi-Hop Reading Comprehension at Scale

    Full text link
    We propose a new CogQA framework for multi-hop question answering in web-scale documents. Inspired by the dual process theory in cognitive science, the framework gradually builds a \textit{cognitive graph} in an iterative process by coordinating an implicit extraction module (System 1) and an explicit reasoning module (System 2). While giving accurate answers, our framework further provides explainable reasoning paths. Specifically, our implementation based on BERT and graph neural network efficiently handles millions of documents for multi-hop reasoning questions in the HotpotQA fullwiki dataset, achieving a winning joint F1F_1 score of 34.9 on the leaderboard, compared to 23.6 of the best competitor.Comment: ACL 201

    Data Science with Vadalog: Bridging Machine Learning and Reasoning

    Full text link
    Following the recent successful examples of large technology companies, many modern enterprises seek to build knowledge graphs to provide a unified view of corporate knowledge and to draw deep insights using machine learning and logical reasoning. There is currently a perceived disconnect between the traditional approaches for data science, typically based on machine learning and statistical modelling, and systems for reasoning with domain knowledge. In this paper we present a state-of-the-art Knowledge Graph Management System, Vadalog, which delivers highly expressive and efficient logical reasoning and provides seamless integration with modern data science toolkits, such as the Jupyter platform. We demonstrate how to use Vadalog to perform traditional data wrangling tasks, as well as complex logical and probabilistic reasoning. We argue that this is a significant step forward towards combining machine learning and reasoning in data science

    Neural Architecture for Question Answering Using a Knowledge Graph and Web Corpus

    Full text link
    In Web search, entity-seeking queries often trigger a special Question Answering (QA) system. It may use a parser to interpret the question to a structured query, execute that on a knowledge graph (KG), and return direct entity responses. QA systems based on precise parsing tend to be brittle: minor syntax variations may dramatically change the response. Moreover, KG coverage is patchy. At the other extreme, a large corpus may provide broader coverage, but in an unstructured, unreliable form. We present AQQUCN, a QA system that gracefully combines KG and corpus evidence. AQQUCN accepts a broad spectrum of query syntax, between well-formed questions to short `telegraphic' keyword sequences. In the face of inherent query ambiguities, AQQUCN aggregates signals from KGs and large corpora to directly rank KG entities, rather than commit to one semantic interpretation of the query. AQQUCN models the ideal interpretation as an unobservable or latent variable. Interpretations and candidate entity responses are scored as pairs, by combining signals from multiple convolutional networks that operate collectively on the query, KG and corpus. On four public query workloads, amounting to over 8,000 queries with diverse query syntax, we see 5--16% absolute improvement in mean average precision (MAP), compared to the entity ranking performance of recent systems. Our system is also competitive at entity set retrieval, almost doubling F1 scores for challenging short queries.Comment: Accepted to Information Retrieval Journa

    Neural Architecture for Question Answering Using a Knowledge Graph and Web Corpus

    Full text link
    In Web search, entity-seeking queries often trigger a special Question Answering (QA) system. It may use a parser to interpret the question to a structured query, execute that on a knowledge graph (KG), and return direct entity responses. QA systems based on precise parsing tend to be brittle: minor syntax variations may dramatically change the response. Moreover, KG coverage is patchy. At the other extreme, a large corpus may provide broader coverage, but in an unstructured, unreliable form. We present AQQUCN, a QA system that gracefully combines KG and corpus evidence. AQQUCN accepts a broad spectrum of query syntax, between well-formed questions to short `telegraphic' keyword sequences. In the face of inherent query ambiguities, AQQUCN aggregates signals from KGs and large corpora to directly rank KG entities, rather than commit to one semantic interpretation of the query. AQQUCN models the ideal interpretation as an unobservable or latent variable. Interpretations and candidate entity responses are scored as pairs, by combining signals from multiple convolutional networks that operate collectively on the query, KG and corpus. On four public query workloads, amounting to over 8,000 queries with diverse query syntax, we see 5--16% absolute improvement in mean average precision (MAP), compared to the entity ranking performance of recent systems. Our system is also competitive at entity set retrieval, almost doubling F1 scores for challenging short queries.Comment: Accepted to Information Retrieval Journa

    Question Answering on Knowledge Bases and Text using Universal Schema and Memory Networks

    Full text link
    Existing question answering methods infer answers either from a knowledge base or from raw text. While knowledge base (KB) methods are good at answering compositional questions, their performance is often affected by the incompleteness of the KB. Au contraire, web text contains millions of facts that are absent in the KB, however in an unstructured form. {\it Universal schema} can support reasoning on the union of both structured KBs and unstructured text by aligning them in a common embedded space. In this paper we extend universal schema to natural language question answering, employing \emph{memory networks} to attend to the large body of facts in the combination of text and KB. Our models can be trained in an end-to-end fashion on question-answer pairs. Evaluation results on \spades fill-in-the-blank question answering dataset show that exploiting universal schema for question answering is better than using either a KB or text alone. This model also outperforms the current state-of-the-art by 8.5 F1F_1 points.\footnote{Code and data available in \url{https://rajarshd.github.io/TextKBQA}}Comment: ACL 2017 (short

    Machine Learning with World Knowledge: The Position and Survey

    Full text link
    Machine learning has become pervasive in multiple domains, impacting a wide variety of applications, such as knowledge discovery and data mining, natural language processing, information retrieval, computer vision, social and health informatics, ubiquitous computing, etc. Two essential problems of machine learning are how to generate features and how to acquire labels for machines to learn. Particularly, labeling large amount of data for each domain-specific problem can be very time consuming and costly. It has become a key obstacle in making learning protocols realistic in applications. In this paper, we will discuss how to use the existing general-purpose world knowledge to enhance machine learning processes, by enriching the features or reducing the labeling work. We start from the comparison of world knowledge with domain-specific knowledge, and then introduce three key problems in using world knowledge in learning processes, i.e., explicit and implicit feature representation, inference for knowledge linking and disambiguation, and learning with direct or indirect supervision. Finally we discuss the future directions of this research topic
    • …
    corecore