3,366 research outputs found

    RADIFUSION: A multi-radiomics deep learning based breast cancer risk prediction model using sequential mammographic images with image attention and bilateral asymmetry refinement

    Full text link
    Breast cancer is a significant public health concern and early detection is critical for triaging high risk patients. Sequential screening mammograms can provide important spatiotemporal information about changes in breast tissue over time. In this study, we propose a deep learning architecture called RADIFUSION that utilizes sequential mammograms and incorporates a linear image attention mechanism, radiomic features, a new gating mechanism to combine different mammographic views, and bilateral asymmetry-based finetuning for breast cancer risk assessment. We evaluate our model on a screening dataset called Cohort of Screen-Aged Women (CSAW) dataset. Based on results obtained on the independent testing set consisting of 1,749 women, our approach achieved superior performance compared to other state-of-the-art models with area under the receiver operating characteristic curves (AUCs) of 0.905, 0.872 and 0.866 in the three respective metrics of 1-year AUC, 2-year AUC and > 2-year AUC. Our study highlights the importance of incorporating various deep learning mechanisms, such as image attention, radiomic features, gating mechanism, and bilateral asymmetry-based fine-tuning, to improve the accuracy of breast cancer risk assessment. We also demonstrate that our model's performance was enhanced by leveraging spatiotemporal information from sequential mammograms. Our findings suggest that RADIFUSION can provide clinicians with a powerful tool for breast cancer risk assessment.Comment: v

    ChatGPT for Shaping the Future of Dentistry: The Potential of Multi-Modal Large Language Model

    Full text link
    The ChatGPT, a lite and conversational variant of Generative Pretrained Transformer 4 (GPT-4) developed by OpenAI, is one of the milestone Large Language Models (LLMs) with billions of parameters. LLMs have stirred up much interest among researchers and practitioners in their impressive skills in natural language processing tasks, which profoundly impact various fields. This paper mainly discusses the future applications of LLMs in dentistry. We introduce two primary LLM deployment methods in dentistry, including automated dental diagnosis and cross-modal dental diagnosis, and examine their potential applications. Especially, equipped with a cross-modal encoder, a single LLM can manage multi-source data and conduct advanced natural language reasoning to perform complex clinical operations. We also present cases to demonstrate the potential of a fully automatic Multi-Modal LLM AI system for dentistry clinical application. While LLMs offer significant potential benefits, the challenges, such as data privacy, data quality, and model bias, need further study. Overall, LLMs have the potential to revolutionize dental diagnosis and treatment, which indicates a promising avenue for clinical application and research in dentistry

    Modeling speech processing in case of neurogenic speech and language disorders: neural dysfunctions, brain lesions, and speech behavior

    Get PDF
    Computer-implemented neural speech processing models can simulate patients suffering from neurogenic speech and language disorders like aphasia, dysarthria, apraxia of speech, and neurogenic stuttering. Speech production and perception tasks simulated by using quantitative neural models uncover a variety of speech symptoms if neural dysfunctions are inserted into these models. Neural model dysfunctions can be differentiated with respect to type (dysfunction of neuron cells or of neural connections), location (dysfunction appearing in a specific buffer of submodule of the model), and severity (percentage of affected neurons or neural connections in that specific submodule of buffer). It can be shown that the consideration of quantitative computer-implemented neural models of speech processing allows to refine the definition of neurogenic speech disorders by unfolding the relation between inserted neural dysfunction and resulting simulated speech behavior while the analysis of neural deficits (e.g., brain lesions) uncovered from imaging experiments with real patients does not necessarily allow to precisely determine the neurofunctional deficit and thus does not necessarily allow to give a precise neurofunctional definition of a neurogenic speech and language disorder. Furthermore, it can be shown that quantitative computer-implemented neural speech processing models are able to simulate complex communication scenarios as they appear in medical screenings, e.g., in tasks like picture naming, word comprehension, or repetition of words or of non-words (syllable sequences) used for diagnostic purposes or used in speech tasks appearing in speech therapy scenarios (treatments). Moreover, neural speech processing models which can simulate neural learning are able to simulate progress in the overall speech processing skills of a model (patient) resulting from specific treatment scenarios if these scenarios can be simulated. Thus, quantitative neural models can be used to sharpen up screening and treatment scenarios and thus increase their effectiveness by varying certain parameters of screening as well as of treatment scenarios

    Detecting Suicidality in Arabic Tweets Using Machine Learning and Deep Learning Techniques

    Full text link
    Social media platforms have revolutionized traditional communication techniques by enabling people globally to connect instantaneously, openly, and frequently. People use social media to share personal stories and express their opinion. Negative emotions such as thoughts of death, self-harm, and hardship are commonly expressed on social media, particularly among younger generations. As a result, using social media to detect suicidal thoughts will help provide proper intervention that will ultimately deter others from self-harm and committing suicide and stop the spread of suicidal ideation on social media. To investigate the ability to detect suicidal thoughts in Arabic tweets automatically, we developed a novel Arabic suicidal tweets dataset, examined several machine learning models, including Na\"ive Bayes, Support Vector Machine, K-Nearest Neighbor, Random Forest, and XGBoost, trained on word frequency and word embedding features, and investigated the ability of pre-trained deep learning models, AraBert, AraELECTRA, and AraGPT2, to identify suicidal thoughts in Arabic tweets. The results indicate that SVM and RF models trained on character n-gram features provided the best performance in the machine learning models, with 86% accuracy and an F1 score of 79%. The results of the deep learning models show that AraBert model outperforms other machine and deep learning models, achieving an accuracy of 91\% and an F1-score of 88%, which significantly improves the detection of suicidal ideation in the Arabic tweets dataset. To the best of our knowledge, this is the first study to develop an Arabic suicidality detection dataset from Twitter and to use deep-learning approaches in detecting suicidality in Arabic posts

    Language models in molecular discovery

    Full text link
    The success of language models, especially transformer-based architectures, has trickled into other domains giving rise to "scientific language models" that operate on small molecules, proteins or polymers. In chemistry, language models contribute to accelerating the molecule discovery cycle as evidenced by promising recent findings in early-stage drug discovery. Here, we review the role of language models in molecular discovery, underlining their strength in de novo drug design, property prediction and reaction chemistry. We highlight valuable open-source software assets thus lowering the entry barrier to the field of scientific language modeling. Last, we sketch a vision for future molecular design that combines a chatbot interface with access to computational chemistry tools. Our contribution serves as a valuable resource for researchers, chemists, and AI enthusiasts interested in understanding how language models can and will be used to accelerate chemical discovery.Comment: Under revie

    Tuberculosis Disease Detection through CXR Images based on Deep Neural Network Approach

    Get PDF
    Tuberculosis (TB) is a disease that, if left untreated for an extended period of time, can ultimately be fatal. Early TB detection can be aided by using a deep learning ensemble. In previous work, ensemble classifiers were only trained on images that shared similar characteristics. It is necessary for an ensemble to produce a diverse set of errors in order for it to be useful; this can be accomplished by making use of a number of different classifiers and/or features. In light of this, a brand-new framework has been constructed in this study for the purpose of segmenting and identifying TB in human Chest X-ray. It was determined that searching traditional web databases for chest X-ray was necessary. At this point, we pass the photos that we have collected over to Swin ResUnet3 so that they may be segmented. After the segmented chest X-ray have been provided to it, the Multi-scale Attention-based Densenet with Extreme Learning Machine (MAD-ELM) model will be applied in the detection stage in order to effectively diagnose tuberculosis from human chest X-ray. This will be done in order to maximize efficiency. Because it increased the variety of errors made by the basic classifiers, the supplied variation of the approach that was proposed was able to detect tuberculosis more effectively. The proposed ensemble method produced results with an accuracy of 94.2 percent, which are comparable to those obtained by past efforts

    Una revisión sistemática de métodos de aprendizaje profundo aplicados a imágenes oculares

    Get PDF
    Artificial intelligence is having an important effect on different areas of medicine, and ophthalmology has not been the exception. In particular, deep learning methods have been applied successfully to the detection of clinical signs and the classification of ocular diseases. This represents a great potential to increase the number of people correctly diagnosed. In ophthalmology, deep learning methods have primarily been applied to eye fundus images and optical coherence tomography. On the one hand, these methods have achieved an outstanding performance in the detection of ocular diseases such as: diabetic retinopathy, glaucoma, diabetic macular degeneration and age-related macular degeneration.  On the other hand, several worldwide challenges have shared big eye imaging datasets with segmentation of part of the eyes, clinical signs and the ocular diagnostic performed by experts. In addition, these methods are breaking the stigma of black-box models, with the delivering of interpretable clinically information. This review provides an overview of the state-of-the-art deep learning methods used in ophthalmic images, databases and potential challenges for ocular diagnosisLa inteligencia artificial está teniendo un importante impacto en diversas áreas de la medicina y a la oftalmología no ha sido la excepción. En particular, los métodos de aprendizaje profundo han sido aplicados con éxito en la detección de signos clínicos y la clasificación de enfermedades oculares. Esto representa un potencial impacto en el incremento de pacientes correctamente y oportunamente diagnosticados. En oftalmología, los métodos de aprendizaje profundo se han aplicado principalmente a imágenes de fondo de ojo y tomografía de coherencia óptica. Por un lado, estos métodos han logrado un rendimiento sobresaliente en la detección de enfermedades oculares tales como: retinopatía diabética, glaucoma, degeneración macular diabética y degeneración macular relacionada con la edad. Por otro lado, varios desafíos mundiales han compartido grandes conjuntos de datos con segmentación de parte de los ojos, signos clínicos y el diagnóstico ocular realizado por expertos. Adicionalmente, estos métodos están rompiendo el estigma de los modelos de caja negra, con la entrega de información clínica interpretable. Esta revisión proporciona una visión general de los métodos de aprendizaje profundo de última generación utilizados en imágenes oftálmicas, bases de datos y posibles desafíos para los diagnósticos oculare

    Determination and evaluation of clinically efficient stopping criteria for the multiple auditory steady-state response technique

    Get PDF
    Background: Although the auditory steady-state response (ASSR) technique utilizes objective statistical detection algorithms to estimate behavioural hearing thresholds, the audiologist still has to decide when to terminate ASSR recordings introducing once more a certain degree of subjectivity. Aims: The present study aimed at establishing clinically efficient stopping criteria for a multiple 80-Hz ASSR system. Methods: In Experiment 1, data of 31 normal hearing subjects were analyzed off-line to propose stopping rules. Consequently, ASSR recordings will be stopped when (1) all 8 responses reach significance and significance can be maintained for 8 consecutive sweeps; (2) the mean noise levels were ≤ 4 nV (if at this “≤ 4-nV” criterion, p-values were between 0.05 and 0.1, measurements were extended only once by 8 sweeps); and (3) a maximum amount of 48 sweeps was attained. In Experiment 2, these stopping criteria were applied on 10 normal hearing and 10 hearing-impaired adults to asses the efficiency. Results: The application of these stopping rules resulted in ASSR threshold values that were comparable to other multiple-ASSR research with normal hearing and hearing-impaired adults. Furthermore, in 80% of the cases, ASSR thresholds could be obtained within a time-frame of 1 hour. Investigating the significant response-amplitudes of the hearing-impaired adults through cumulative curves indicated that probably a higher noise-stop criterion than “≤ 4 nV” can be used. Conclusions: The proposed stopping rules can be used in adults to determine accurate ASSR thresholds within an acceptable time-frame of about 1 hour. However, additional research with infants and adults with varying degrees and configurations of hearing loss is needed to optimize these criteria
    corecore