41,854 research outputs found

    Target-Tailored Source-Transformation for Scene Graph Generation

    Get PDF
    Scene graph generation aims to provide a semantic and structural description of an image, denoting the objects (with nodes) and their relationships (with edges). The best performing works to date are based on exploiting the context surrounding objects or relations,e.g., by passing information among objects. In these approaches, to transform the representation of source objects is a critical process for extracting information for the use by target objects. In this work, we argue that a source object should give what tar-get object needs and give different objects different information rather than contributing common information to all targets. To achieve this goal, we propose a Target-TailoredSource-Transformation (TTST) method to efficiently propagate information among object proposals and relations. Particularly, for a source object proposal which will contribute information to other target objects, we transform the source object feature to the target object feature domain by simultaneously taking both the source and target into account. We further explore more powerful representations by integrating language prior with the visual context in the transformation for the scene graph generation. By doing so the target object is able to extract target-specific information from the source object and source relation accordingly to refine its representation. Our framework is validated on the Visual Genome bench-mark and demonstrated its state-of-the-art performance for the scene graph generation. The experimental results show that the performance of object detection and visual relation-ship detection are promoted mutually by our method

    Scene Graph Generation with External Knowledge and Image Reconstruction

    Full text link
    Scene graph generation has received growing attention with the advancements in image understanding tasks such as object detection, attributes and relationship prediction,~\etc. However, existing datasets are biased in terms of object and relationship labels, or often come with noisy and missing annotations, which makes the development of a reliable scene graph prediction model very challenging. In this paper, we propose a novel scene graph generation algorithm with external knowledge and image reconstruction loss to overcome these dataset issues. In particular, we extract commonsense knowledge from the external knowledge base to refine object and phrase features for improving generalizability in scene graph generation. To address the bias of noisy object annotations, we introduce an auxiliary image reconstruction path to regularize the scene graph generation network. Extensive experiments show that our framework can generate better scene graphs, achieving the state-of-the-art performance on two benchmark datasets: Visual Relationship Detection and Visual Genome datasets.Comment: 10 pages, 5 figures, Accepted in CVPR 201

    Context-Dependent Diffusion Network for Visual Relationship Detection

    Full text link
    Visual relationship detection can bridge the gap between computer vision and natural language for scene understanding of images. Different from pure object recognition tasks, the relation triplets of subject-predicate-object lie on an extreme diversity space, such as \textit{person-behind-person} and \textit{car-behind-building}, while suffering from the problem of combinatorial explosion. In this paper, we propose a context-dependent diffusion network (CDDN) framework to deal with visual relationship detection. To capture the interactions of different object instances, two types of graphs, word semantic graph and visual scene graph, are constructed to encode global context interdependency. The semantic graph is built through language priors to model semantic correlations across objects, whilst the visual scene graph defines the connections of scene objects so as to utilize the surrounding scene information. For the graph-structured data, we design a diffusion network to adaptively aggregate information from contexts, which can effectively learn latent representations of visual relationships and well cater to visual relationship detection in view of its isomorphic invariance to graphs. Experiments on two widely-used datasets demonstrate that our proposed method is more effective and achieves the state-of-the-art performance.Comment: 8 pages, 3 figures, 2018 ACM Multimedia Conference (MM'18
    • …
    corecore