16,534 research outputs found

    Proof search issues in some non-classical logics

    Get PDF
    This thesis develops techniques and ideas on proof search. Proof search is used with one of two meanings. Proof search can be thought of either as the search for a yes/no answer to a query (theorem proving), or as the search for all proofs of a formula (proof enumeration). This thesis is an investigation into issues in proof search in both these senses for some non-classical logics. Gentzen systems are well suited for use in proof search in both senses. The rules of Gentzen sequent calculi are such that implementations can be directed by the top level syntax of sequents, unlike other logical calculi such as natural deduction. All the calculi for proof search in this thesis are Gentzen sequent calculi. In Chapter 2, permutation of inference rules for Intuitionistic Linear Logic is studied. A focusing calculus, ILLF, in the style of Andreoli ([And92]) is developed.This calculus allows only one proof in each equivalence class of proofs equivalent up to permutations of inferences. The issue here is both theorem proving and proof enumeration. For certain logics, normal natural deductions provide a proof-theoretic semantics. Proof enumeration is then the enumeration of all these deductions. Herbelin’s cutfree LJT ([Her95], here called MJ) is a Gentzen system for intuitionistic logic allowing derivations that correspond in a 1–1 way to the normal natural deductions of intuitionistic logic. This calculus is therefore well suited to proof enumeration. Such calculi are called ‘permutation-free’ calculi. In Chapter 3, MJ is extended to a calculus for an intuitionistic modal logic (due to Curry) called Lax Logic. We call this calculus PFLAX. The proof theory of MJ is extended to PFLAX. Chapter 4 presents work on theorem proving for propositional logics using a history mechanism for loop-checking. This mechanism is a refinement of one developed by Heuerding et al ([HSZ96]). It is applied to two calculi for intuitionistic logic and also to two modal logics: Lax Logic and intuitionistic S4. The calculi for intuitionistic logic are compared both theoretically and experimentally with other decision procedures for the logic. Chapter 5 is a short investigation of embedding intuitionistic logic in Intuitionistic Linear Logic. A new embedding of intuitionistic logic in Intuitionistic Linear Logic is given. For the hereditary Harrop fragment of intuitionistic logic, this embedding induces the calculus MJ for intuitionistic logic. In Chapter 6 a ‘permutation-free’ calculus is given for Intuitionistic Linear Logic. Again, its proof-theoretic properties are investigated. The calculus is proved to besound and complete with respect to a proof-theoretic semantics and (weak) cutelimination is proved. Logic programming can be thought of as proof enumeration in constructive logics. All the proof enumeration calculi in this thesis have been developed with logic programming in mind. We discuss at the appropriate points the relationship between the calculi developed here and logic programming. Appendix A contains presentations of the logical calculi used and Appendix B contains the sets of benchmark formulae used in Chapter

    Proof Search Issues in Some Non-Classical Logics

    Get PDF
    This thesis develops techniques and ideas on proof search. Proof search is used with one of two meanings. Proof search can be thought of either as the search for a yes/no answer to a query (theorem proving), or as the search for all proofs of a formula (proof enumeration). This thesis is an investigation into issues in proof search in both these senses for some non-classical logics. Gentzen systems are well suited for use in proof search in both senses. The rules of Gentzen sequent calculi are such that implementations can be directed by the top level syntax of sequents, unlike other logical calculi such as natural deduction. All the calculi for proof search in this thesis are Gentzen sequent calculi. In Chapter 2, permutation of inference rules for Intuitionistic Linear Logic is studied. A focusing calculus, ILLF, in the style of Andreoli (citeandreoli-92) is developed. This calculus allows only one proof in each equivalence class of proofs equivalent up to permutations of inferences. The issue here is both theorem proving and proof enumeration. For certain logics, normal natural deductions provide a proof-theoretic semantics. Proof enumeration is then the enumeration of all these deductions. Herbelin's cut-free LJT (citeherb-95, here called MJ) is a Gentzen system for intuitionistic logic allowing derivations that correspond in a 1--1 way to the normal natural deductions of intuitionistic logic. This calculus is therefore well suited to proof enumeration. Such calculi are called `permutation-free' calculi. In Chapter 3, MJ is extended to a calculus for an intuitionistic modal logic (due to Curry) called Lax Logic. We call this calculus PFLAX. The proof theory of MJ is extended to PFLAX. Chapter 4 presents work on theorem proving for propositional logics using a history mechanism for loop-checking. This mechanism is a refinement of one developed by Heuerding emphet al (citeheu-sey-zim-96). It is applied to two calculi for intuitionistic logic and also to two modal logics: Lax Logic and intuitionistic S4. The calculi for intuitionistic logic are compared both theoretically and experimentally with other decision procedures for the logic. Chapter 5 is a short investigation of embedding intuitionistic logic in Intuitionistic Linear Logic. A new embedding of intuitionistic logic in Intuitionistic Linear Logic is given. For the hereditary Harrop fragment of intuitionistic logic, this embedding induces the calculus MJ for intuitionistic logic. In Chapter 6 a `permutation-free' calculus is given for Intuitionistic Linear Logic. Again, its proof-theoretic properties are investigated. The calculus is proved to be sound and complete with respect to a proof-theoretic semantics and (weak) cut-elimination is proved. Logic programming can be thought of as proof enumeration in constructive logics. All the proof enumeration calculi in this thesis have been developed with logic programming in mind. We discuss at the appropriate points the relationship between the calculi developed here and logic programming. Appendix A contains presentations of the logical calculi used and Appendix B contains the sets of benchmark formulae used in Chapter 4

    Proof-Theoretic Methods for Analysis of Functional Programs

    Get PDF
    We investigate how, in a natural deduction setting, we can specify concisely a wide variety of tasks that manipulate programs as data objects. This study will provide us with a better understanding of various kinds of manipulations of programs and also an operational understanding of numerous features and properties of a rich functional programming language. We present a technique, inspired by structural operational semantics and natural semantics, for specifying properties of, or operations on, programs. Specifications of this sort are presented as sets of inference rules and are encoded as clauses in a higher-order, intuitionistic meta-logic. Program properties are then proved by constructing proofs in this meta-logic. We argue the following points regarding these specifications and their proofs: (i) the specifications are clear and concise and they provide intuitive descriptions of the properties being described; (ii) a wide variety of program analysis tools can be specified in a single unified framework, and thus we can investigate and understand the relationship between various tools; (iii) proof theory provides a well-established and formal setting in which to examine meta-theoretic properties of these specifications; and (iv) the meta-logic we use can be implemented naturally in an extended logic programming language and thus we can produce experimental implementations of the specifications. We expect that our efforts will provide new perspectives and insights for many program manipulation tasks

    Infinitary proof theory : the multiplicative additive case

    Get PDF
    Infinitary and regular proofs are commonly used in fixed point logics. Being natural intermediatedevices between semantics and traditional finitary proof systems, they are commonly found incompleteness arguments, automated deduction, verification, etc. However, their proof theoryis surprisingly underdeveloped. In particular, very little is known about the computationalbehavior of such proofs through cut elimination. Taking such aspects into account has unlockedrich developments at the intersection of proof theory and programming language theory. Onewould hope that extending this to infinitary calculi would lead, e.g., to a better understanding ofrecursion and corecursion in programming languages. Structural proof theory is notably basedon two fundamental properties of a proof system: cut elimination and focalization. The firstone is only known to hold for restricted (purely additive) infinitary calculi, thanks to the workof Santocanale and Fortier; the second one has never been studied in infinitary systems. Inthis paper, we consider the infinitary proof system μMALL ∞ for multiplicative and additivelinear logic extended with least and greatest fixed points, and prove these two key results. Wethus establish μMALL ∞ as a satisfying computational proof system in itself, rather than just anintermediate device in the study of finitary proof systems

    Constructive Provability Logic

    Full text link
    We present constructive provability logic, an intuitionstic modal logic that validates the L\"ob rule of G\"odel and L\"ob's provability logic by permitting logical reflection over provability. Two distinct variants of this logic, CPL and CPL*, are presented in natural deduction and sequent calculus forms which are then shown to be equivalent. In addition, we discuss the use of constructive provability logic to justify stratified negation in logic programming within an intuitionstic and structural proof theory.Comment: Extended version of IMLA 2011 submission of the same titl

    NaDeA: A Natural Deduction Assistant with a Formalization in Isabelle

    Get PDF
    We present a new software tool for teaching logic based on natural deduction. Its proof system is formalized in the proof assistant Isabelle such that its definition is very precise. Soundness of the formalization has been proved in Isabelle. The tool is open source software developed in TypeScript / JavaScript and can thus be used directly in a browser without any further installation. Although developed for undergraduate computer science students who are used to study and program concrete computer code in a programming language we consider the approach relevant for a broader audience and for other proof systems as well.Comment: Proceedings of the Fourth International Conference on Tools for Teaching Logic (TTL2015), Rennes, France, June 9-12, 2015. Editors: M. Antonia Huertas, Jo\~ao Marcos, Mar\'ia Manzano, Sophie Pinchinat, Fran\c{c}ois Schwarzentrube

    Sequent Calculus and Equational Programming

    Full text link
    Proof assistants and programming languages based on type theories usually come in two flavours: one is based on the standard natural deduction presentation of type theory and involves eliminators, while the other provides a syntax in equational style. We show here that the equational approach corresponds to the use of a focused presentation of a type theory expressed as a sequent calculus. A typed functional language is presented, based on a sequent calculus, that we relate to the syntax and internal language of Agda. In particular, we discuss the use of patterns and case splittings, as well as rules implementing inductive reasoning and dependent products and sums.Comment: In Proceedings LFMTP 2015, arXiv:1507.0759

    Dual-Context Calculi for Modal Logic

    Get PDF
    We present natural deduction systems and associated modal lambda calculi for the necessity fragments of the normal modal logics K, T, K4, GL and S4. These systems are in the dual-context style: they feature two distinct zones of assumptions, one of which can be thought as modal, and the other as intuitionistic. We show that these calculi have their roots in in sequent calculi. We then investigate their metatheory, equip them with a confluent and strongly normalizing notion of reduction, and show that they coincide with the usual Hilbert systems up to provability. Finally, we investigate a categorical semantics which interprets the modality as a product-preserving functor.Comment: Full version of article previously presented at LICS 2017 (see arXiv:1602.04860v4 or doi: 10.1109/LICS.2017.8005089
    • …
    corecore