5,306 research outputs found

    Personality and learning styles towards the practical-based approach

    Get PDF
    An enduring question for educational research is the result of individual deviations in the efficacy of learning. The individual learning differences that have been much explored relate to differences in personality, learning styles, strategies and conceptions of learning. This article studies the personality and the learning style profile exhibited by students in a practical based approach of vocational courses. The relationship between personality and learning styles among students was assessed as the students got along through the curriculum. The analysis show that students are more oriented towards an active learning mode in a practical-based approach. Given a specific instruction, some people will learn more effectively than others due to their individual personality and learning styles. This study will help a vocational instructor and advisors to understand their students and to design instruction that can benefit students to accomplish a respectable performance in their learning process

    Effect of temperature-dependent viscosity on entropy generation in transient viscoelastic polymeric fluid flow from an isothermal vertical plate

    Get PDF
    A numerical investigation of the viscosity variation effect upon entropy generation in time-dependent viscoelastic polymeric fluid flow and natural convection from a semi-infinite vertical plate is described. The Reiner-Rivlin second order differential model is utilized which can predict normal stress differences in dilute polymers. The conservation equations for heat, momentum and mass are normalized with appropriate transformations and the resulting unsteady nonlinear coupled partial differential equations are elucidated with the well-organized unconditionally stable implicit Crank-Nicolson finite difference method subject to suitable initial and boundary conditions. Average values of wall shear stress and Nusselt number, second-grade fluid flow variables conferred for distinct values of physical parameters. Numerical solutions are presented to examine the entropy generation and Bejan number along with their contours. The outcomes show that entropy generation parameter and Bejan number both increase with increasing values of group parameter and Grashof number. The present study finds applications in geothermal engineering, petroleum recovery, oil extraction and thermal insulation, etc

    On the hydrodynamics and heat convection of an impinging external flow upon a cylinder with transpiration and embedded in a porous medium

    Get PDF
    This paper extends the existing studies of heat convection by an external flow impinging upon a flat porous insert to that on a circular cylinder inside a porous medium. The surface of the cylinder is subject to constant temperature and can include uniform or non-uniform transpiration. These cylindrical configurations are introduced in the analyses of stagnation point flows in porous media for the first time. The equations governing steady transport of momentum and thermal energy in porous media are reduced to simpler nonlinear differential equations and subsequently solved numerically. This reveals the dimensionless velocity and temperature fields of the stagnation-point flow, as well as the Nusselt number and shear stress on the surface of the cylinder. The results show that transpiration on the surface of the cylinder and Reynolds number of the external flow dominate the fluid dynamics and heat transfer problems. In particular, non-uniform transpiration is shown to significantly affect the thermal and hydrodynamic responses of the system in the circumferential direction. However, the permeability and porosity of the porous medium are found to have relatively smaller influences

    Effect of viscous dissipation on natural convection in a non-Darcy porous medium saturated with non-Newtonian fluid of variable viscosity

    Get PDF
    This paper investigates the influence of the effect of viscous dissipation and radiation on natural convection heat transfer from vertical flat plate in a non-Darcy porous media saturated with non-Newtonian fluid of variable viscosity. The wall and the ambient medium are maintained at constant but different levels of temperature. The Ostwald-de Waele power law model is used to characterize the non-Newtonian fluid behavior. The viscosity of the fluid is assumed to follow Reynolds viscosity model. Rosseland approximation is used to describe the radiative heat flux in the energy equation. The governing equations in their non-similar form are solved numerically by local non-similarity method. The effects of variable viscosity, viscous dissipation, radiation and the power-law index parameters on the velocity and temperature profiles as well as on the heat transfer coefficient are analyzed. © Kairi et al.published_or_final_versio

    THE EFFECTS OF TEMPERATURE DEPENDENT VISCOSITY AND VISCOUS DISSIPATION ON MHD CONVECTION FLOW FROM AN ISOTHERMAL HORIZONTAL CIRCULAR CYLINDER IN THE PRESENCE OF STRESS WORK AND HEAT GENERATION

    Get PDF
    Temperature dependent viscosity and Viscous Dissipation effects are considered on hydromagnetic natural convection flow from horizontal circular cylinder immersed in an electrically conducting fluid with viscosity proportional to a linear function of temperature in the presence of stress work and heat generation. The partial differential governing equations are transformed to dimensionless forms. The numerical computations are carried out for several values of physical parameters involved in the transformed equations. The resulting nonlinear system of partial differential equations is solved numerically by Keller box method which is an implicit finite difference technique with Newton's linearization method. The features of the flow and heat transfer characteristics for different values of the governing parameters are analyzed and discussed. To support the accuracy of the numerical results, a comparison is made with known results from the open literature for some particular cases of the present study and the results are found to be in good agreement

    Slabs in the lower mantle and their modulation of plume formation

    Get PDF
    Numerical mantle convection models indicate that subducting slabs can reach the core-mantle boundary (CMB) for a wide range of assumed material properties and plate tectonic histories. An increase in lower mantle viscosity, a phase transition at 660 km depth, depth-dependent thermal expansivity, and depth-dependent thermal diffusivity do not preclude model slabs from reaching the CMB. We find that ancient slabs could be associated with lateral temperature anomalies ~500°C cooler than ambient mantle. Plausible increases of thermal conductivity with depth will not cause slabs to diffuse away. Regional spherical models with actual plate evolutionary models show that slabs are unlikely to be continuous from the upper mantle to the CMB, even for radially simple mantle structures. The observation from tomography showing only a few continuous slab-like features from the surface to the CMB may be a result of complex plate kinematics, not mantle layering. There are important consequences of deeply penetrating slabs. Our models show that plumes preferentially develop on the edge of slabs. In areas on the CMB free of slabs, plume formation and eruption are expected to be frequent while the basal thermal boundary layer would be thin. However, in areas beneath slabs, the basal thermal boundary layer would be thicker and plume formation infrequent. Beneath slabs, a substantial amount of hot mantle can be trapped over long periods of time, leading to “mega-plume” formation. We predict that patches of low seismic velocity may be found beneath large-scale high seismic velocity structures at the core-mantle boundary. We find that the location, buoyancy, and geochemistry of mega-plumes will differ from those plumes forming at the edge of slabs. Various geophysical and geochemical implications of this finding are discussed

    Natural convection flow from an isothermal horizontal cylinder in presence of heat generation

    Get PDF
    Natural convection laminar boundary layer flow from a horizontal circular cylinder with a uniform surface temperature at presence of heat generation has been investigated. The governing boundary layer equations are transformed into a non-dimensional form and the resulting nonlinear systems of partial differential equations are solved numerically applying two distinct methods namely (i) implicit finite difference method together with the Keller box scheme and (ii) series solution technique. The results of the surface shear stress in terms of the local skin friction and the surface rate of heat transfer in terms of the local Nusselt number for a selection of the heat generation parameter γ (= 0.0, 0.2, 0.5, 0.8, 1.0) are obtained and presented in both tabular and graphical formats. Without effect of the internal heat generation inside the fluid domain for which we take γ = 0.0, the present numerical results show an excellent agreement with those of Merkin [J.H. Merkin, Free convection boundary layer on an isothermal horizontal circular cylinders, in: ASME/AIChE, Heat Transfer Conference, St. Louis, MO, August 9–11, 1976]. The effects of γ on the fluid velocity, temperature distribution, streamlines and isotherms are examined

    Magnetohydrodynamic free convection boundary layer Flow of non-Newtonian tangent hyperbolic fluid from a vertical permeable cone with variable temperature

    Get PDF
    The nonlinear, non-isothermal steady-state boundary layer flow and heat transfer of an incompressible tangent hyperbolic non-Newtonian (viscoelastic) fluid from a vertical permeable cone with magnetic field are studied. The transformed conservation equations are solved numerically subject to physically appropriate boundary conditions using the second-order accurate implicit finite difference Keller-box technique. The numerical code is validated with previous studies. The influence of a number of emerging non-dimensional parameters, namely a Weissenberg number (We), rheological power law index (m), surface temperature exponent (n), Prandtl number (Pr), magnetic parameter (M) suction/injection parameter (fw) and dimensionless tangential coordinate (Îľ) on velocity and temperature evolution in the boundary layer regime, is examined in detail. Furthermore, the effects of these parameters on surface heat transfer rate and local skin friction are also investigated. It is observed that velocity, surface heat transfer rate and local skin friction are reduced with increasing Weissenberg number, but temperature is increased. Increasing m enhances velocity and surface heat transfer rate but reduces temperature and local skin friction. An increase in non-isothermal power law index (n) is observed to decrease the velocity and temperature. Increasing magnetic parameter (M) is found to decrease the velocity and increase the temperature. Overall, the primary influence on free convection is sustained through the magnetic body force parameter, M, and also the surface mass flux (injection/suction) parameter, fw. The rheological effects, while still prominent, are not as dramatic. Boundary layers (both hydrodynamic and thermal) are, therefore, most strongly modified by the applied magnetic field and wall mass flux effect. The study is pertinent to smart coatings, e.g., durable paints, aerosol deposition processing and water-based solvent thermal treatment in chemical engineering

    Unsteady MHD Free Convective Flow Along A Vertical Porous Plate Embedded In A Porous Medium With Heat Generation, Variable Suction And Chemical Reaction Effects

    Get PDF
    A two-dimensional laminar unsteady MHD free convective heat and mass transfer flow past a vertical porous plate immersed in a porous medium has been studied numerically in presence of chemical reaction, heat generation and variable suction. The governing partial differential equations are reduced to a system of self-similar equations using the similarity transformations. The resultant equations are then solved numerically using the Runge-Kutta method along with shooting technique. The effects of governing physical parameters on velocity, temperature and concentration as well as skin-friction coefficient, Nusselt number and Sherwood number are computed and presented in graphical and tabular forms. Comparisons with previously published work are performed and the results are found to be in excellent agreement. Keywords: Free convection; Unsteady; MHD; chemical reaction; heat generation; variable suction; porous medium
    • …
    corecore