54,378 research outputs found

    Natural Compression for Distributed Deep Learning

    Full text link
    Modern deep learning models are often trained in parallel over a collection of distributed machines to reduce training time. In such settings, communication of model updates among machines becomes a significant performance bottleneck and various lossy update compression techniques have been proposed to alleviate this problem. In this work, we introduce a new, simple yet theoretically and practically effective compression technique: {\em natural compression (NC)}. Our technique is applied individually to all entries of the to-be-compressed update vector and works by randomized rounding to the nearest (negative or positive) power of two, which can be computed in a "natural" way by ignoring the mantissa. We show that compared to no compression, NC increases the second moment of the compressed vector by not more than the tiny factor \nicefrac{9}{8}, which means that the effect of NC on the convergence speed of popular training algorithms, such as distributed SGD, is negligible. However, the communications savings enabled by NC are substantial, leading to {\em 33-4×4\times improvement in overall theoretical running time}. For applications requiring more aggressive compression, we generalize NC to {\em natural dithering}, which we prove is {\em exponentially better} than the common random dithering technique. Our compression operators can be used on their own or in combination with existing operators for a more aggressive combined effect, and offer new state-of-the-art both in theory and practice.Comment: 8 pages, 20 pages of Appendix, 6 Tables, 14 Figure

    DRASIC: Distributed Recurrent Autoencoder for Scalable Image Compression

    Full text link
    We propose a new architecture for distributed image compression from a group of distributed data sources. The work is motivated by practical needs of data-driven codec design, low power consumption, robustness, and data privacy. The proposed architecture, which we refer to as Distributed Recurrent Autoencoder for Scalable Image Compression (DRASIC), is able to train distributed encoders and one joint decoder on correlated data sources. Its compression capability is much better than the method of training codecs separately. Meanwhile, the performance of our distributed system with 10 distributed sources is only within 2 dB peak signal-to-noise ratio (PSNR) of the performance of a single codec trained with all data sources. We experiment distributed sources with different correlations and show how our data-driven methodology well matches the Slepian-Wolf Theorem in Distributed Source Coding (DSC). To the best of our knowledge, this is the first data-driven DSC framework for general distributed code design with deep learning
    • …
    corecore