19 research outputs found

    Utilitarian resource assignment

    Get PDF
    This paper studies a resource allocation problem introduced by Koutsoupias and Papadimitriou. The scenario is modelled as a multiple-player game in which each player selects one of a finite number of known resources. The cost to the player is the total weight of all players who choose that resource, multiplied by the ``delay'' of that resource. Recent papers have studied the Nash equilibria and social optima of this game in terms of the LL_\infty cost metric, in which the social cost is taken to be the maximum cost to any player. We study the L1L_1 variant of this game, in which the social cost is taken to be the sum of the costs to the individual players, rather than the maximum of these costs. We give bounds on the size of the coordination ratio, which is the ratio between the social cost incurred by selfish behavior and the optimal social cost; we also study the algorithmic problem of finding optimal (lowest-cost) assignments and Nash Equilibria. Additionally, we obtain bounds on the ratio between alternative Nash equilibria for some special cases of the problem.Comment: 19 page

    Mixed Nash equilibria in selfish routing problems with dynamic constraints

    Get PDF
    AbstractWe study the problem of routing traffic through a congested network consisting of m parallel links, each having a certain speed. Moreover, we are given n selfish (non-cooperative) agents, each of them willing to route her own piece of traffic on exactly one link. Agents are selfish in that they only pick a link which minimize the delay of their own piece of traffic. In this context much effort has been lavished in the framework of mixed Nash equilibria where the agent’s routing choices are regulated by probability distributions, one for each agent, which let the system thus enter a steady state from which no agent is willing to unilaterally deviate. In this work we consider situations in which some agents have constraints on the routing choice: in a sense they are forbidden to route their traffic on some links. We show that at most one Nash equilibrium may exist and, in some cases with equal speed links and where each agent is forbidden to route on at most one link, we give necessary and sufficient conditions on its existence; these conditions correlate the traffic load of the agents. We consider also a dynamic behaviour of the network when the constraints may vary, in particular when a constraint is removed: we establish under which conditions the network is still in equilibrium. These conditions are all effective in the sense that, given a set of yes/no routing constraints on each link for each agent, we provide the probability distributions corresponding to the unique Nash equilibrium associated to the constraints (if it exists). Moreover these conditions and the possible Nash equilibrium are computed in time O(mn)

    Load Balancing via Random Local Search in Closed and Open systems

    Full text link
    In this paper, we analyze the performance of random load resampling and migration strategies in parallel server systems. Clients initially attach to an arbitrary server, but may switch server independently at random instants of time in an attempt to improve their service rate. This approach to load balancing contrasts with traditional approaches where clients make smart server selections upon arrival (e.g., Join-the-Shortest-Queue policy and variants thereof). Load resampling is particularly relevant in scenarios where clients cannot predict the load of a server before being actually attached to it. An important example is in wireless spectrum sharing where clients try to share a set of frequency bands in a distributed manner.Comment: Accepted to Sigmetrics 201

    The Price of Anarchy for Polynomial Social Cost

    Get PDF
    In this work, we consider an interesting variant of the well-studied KP model [KP99] for selfish routing that reflects some influence from the much older Wardrop [War52]. In the new model, user traffics are still unsplittable, while social cost is now the expectation of the sum, over all links, of a certain polynomial evaluated at the total latency incurred by all users choosing the link; we call it polynomial social cost. The polynomials that we consider have non-negative coefficients. We are interested in evaluating Nash equilibria in this model, and we use the Price of Anarchy as our evaluation measure. We prove the Fully Mixed Nash Equilibrium Conjecture for identical users and two links, and establish an approximate version of the conjecture for arbitrary many links. Moreover, we give upper bounds on the Price of Anarchy

    A new model for selfish routing

    Get PDF
    AbstractIn this work, we introduce and study a new, potentially rich model for selfish routing over non-cooperative networks, as an interesting hybridization of the two prevailing such models, namely the KPmodel [E. Koutsoupias, C.H. Papadimitriou, Worst-case equilibria, in: G. Meinel, S. Tison (Eds.), Proceedings of the 16th Annual Symposium on Theoretical Aspects of Computer Science, in: Lecture Notes in Computer Science, vol. 1563, Springer-Verlag, 1999, pp. 404–413] and the Wmodel [J.G. Wardrop, Some theoretical aspects of road traffic research, Proceedings of the of the Institute of Civil Engineers 1 (Pt. II) (1952) 325–378].In the hybrid model, each of n users is using a mixed strategy to ship its unsplittable traffic over a network consisting of m parallel links. In a Nash equilibrium, no user can unilaterally improve its Expected Individual Cost. To evaluate Nash equilibria, we introduce Quadratic Social Cost as the sum of the expectations of the latencies, incurred by the squares of the accumulated traffic. This modeling is unlike the KP model, where Social Cost [E. Koutsoupias, C.H. Papadimitriou, Worst-case equilibria, in: G. Meinel, S. Tison (Eds.), Proceedings of the 16th Annual Symposium on Theoretical Aspects of Computer Science, in: Lecture Notes in Computer Science, vol. 1563, Springer-Verlag, 1999, pp. 404–413] is the expectation of the maximum latency incurred by the accumulated traffic; but it is like the W model since the Quadratic Social Cost can be expressed as a weighted sum of Expected Individual Costs. We use the Quadratic Social Cost to define Quadratic Coordination Ratio. Here are our main findings: •Quadratic Social Cost can be computed in polynomial time. This is unlike the #P-completeness [D. Fotakis, S. Kontogiannis, E. Koutsoupias, M. Mavronicolas, P. Spirakis, The structure and complexity of Nash equilibria for a selfish routing game, in: P. Widmayer, F. Triguero, R. Morales, M. Hennessy, S. Eidenbenz, R. Conejo (Eds.), Proceedings of the 29th International Colloquium on Automata, Languages and Programming, in: Lecture Notes in Computer Science, vol. 2380, Springer-Verlag, 2002, pp. 123–134] of computing Social Cost for the KP model.•For the case of identical users and identical links, the fully mixed Nash equilibrium [M. Mavronicolas, P. Spirakis, The price of selfish routing, Algorithmica 48 (1) (2007) 91–126], where each user assigns positive probability to every link, maximizes Quadratic Social Cost.•As our main result, we present a comprehensive collection of tight, constant (that is, independent of m and n), strictly less than 2, lower and upper bounds on the Quadratic Coordination Ratio for several, interesting special cases. Some of the bounds stand in contrast to corresponding super-constant bounds on the Coordination Ratio previously shown in [A. Czumaj, B. Vöcking, Tight bounds for worst-case equilibria, ACM Transactions on Algorithms 3 (1) (2007); E. Koutsoupias, M. Mavronicolas, P. Spirakis, Approximate equilibria and ball fusion, Theory of Computing Systems 36 (6) (2003) 683–693; E. Koutsoupias, C.H. Papadimitriou, Worst-case equilibria, in: G. Meinel, S. Tison (Eds.), Proceedings of the 16th Annual Symposium on Theoretical Aspects of Computer Science, in: Lecture Notes in Computer Science, vol. 1563, Springer-Verlag, 1999, pp. 404–413; M. Mavronicolas, P. Spirakis, The price of selfish routing, Algorithmica 48 (1) (2007) 91–126] for the KP model

    Strategic Trip Planning: Striking a Balance Between Competition and Cooperation

    Get PDF
    In intelligent transportation systems, cooperative mobility planning is considered to be one of the challenging problems. Mobility planning as it stands today is an in- dividual decision-making effort that takes place in an environment governed by the collective actions of various competing travellers. Despite the extensive research on mobility planning, a situation in which multiple behavioural-driven travellers partic- ipate in a cooperative endeavour to help each other optimize their objectives has not been investigated. Furthermore, due to the inherent multi-participant nature of the mobility problem, the existing solutions fail to produce ground truth optimal mobil- ity plans in the practical sense - despite their claimed and well proven theoretical optimality. This thesis proposes a multi-module team mobility planning framework to address the team trip planning problem with a particular emphasis on modelling the inter- action between behaviour-driven rational travellers. The framework accommodates the travellers’ individual behaviours, preferences, and goals in cooperative and com- petitive scenarios. The individual behaviours of the travellers and their interaction processes are viewed as a team trip planning game. For this game, a theoretical anal- ysis is presented, which includes an analysis of the existence and the balancedness of the final solution. The proposed framework is composed of three principal modules: cooperative trip planning, team formation, and traveller-centric trip planning (TCTP). The cooper- ative trip planning module deploys a bargaining model to manage conflicts between the travellers that could occur in their endeavour to discover a general, satisfactory solution. The number of players and their interaction process is controlled by the team formation module. The TCTP module adopts an alternative perspective to the individualized trip-planning problem in the sense that it is being behavioural driven problem. This allows for multitudes of traveler centric objectives and constraints, as well as aspects of the environment as they pertain to the traveller’s preferences, to be incorporated in the process. Within the scope of the team mobility planning frame- work, the TCTP is utilized to supply the travellers with personalized strategies that are incorporated in the cooperative game. The concentration problem is used in this thesis to demonstrate the effectiveness of the TCTP module as a behavioural-driven trip planner. Finally, to validate the theoretical set-up of the team trip planning game, we introduce the territory sharing problem for social taxis. We use the team mobility framework as a basis to solve the problem. Furthermore, we present an argument for the convergence and the efficiency of a coarse correlated equilibrium. In addition to the validation of a variety of theoretical concepts, the territory sharing problem is used to demonstrate the applicability of the proposed framework in dealing with cooperative mobility planning problems
    corecore