2,139 research outputs found

    Nash Equilibria in Discrete Routing Games with Convex Latency Functions

    Get PDF
    In a discrete routing game, each of n selfish users employs a mixed strategy to ship her (unsplittable) traffic over m parallel links. The (expected) latency on a link is determined by an arbitrary non-decreasing, non-constant and convex latency function φ. In a Nash equilibrium, each user alone is minimizing her (Expected) Individual Cost, which is the (expected) latency on the link she chooses. To evaluate Nash equilibria, we formulate Social Cost as the sum of the users ’ (Expected) Individual Costs. The Price of Anarchy is the worst-case ratio of Social Cost for a Nash equilibrium over the least possible Social Cost. A Nash equilibrium is pure if each user deterministically chooses a single link; a Nash equilibrium is fully mixed if each user chooses each link with non-zero probability. We obtain: For the case of identical users, the Social Cost of any Nash equilibrium is no more than the Social Cost of the fully mixed Nash equilibrium, which may exist only uniquely. Moreover, instances admitting a fully mixed Nash equilibrium enjoy an efficient characterization. For the case of identical users, we derive two upper bounds on the Price of Anarchy: For the case of identical links with a monomial latency function φ(x) = x d, the Price of Anarchy is the Bell number of order d + 1. For pure Nash equilibria, a generic upper bound from the Wardrop model can be transfered to discrete routing games. For polynomial latency functions with non-negative coefficients and degree d, this yields an upper bound of d + 1. For th

    Load Balancing Congestion Games and their Asymptotic Behavior

    Get PDF
    A central question in routing games has been to establish conditions for the uniqueness of the equilibrium, either in terms of network topology or in terms of costs. This question is well understood in two classes of routing games. The first is the non-atomic routing introduced by Wardrop on 1952 in the context of road traffic in which each player (car) is infinitesimally small; a single car has a negligible impact on the congestion. Each car wishes to minimize its expected delay. Under arbitrary topology, such games are known to have a convex potential and thus a unique equilibrium. The second framework is splitable atomic games: there are finitely many players, each controlling the route of a population of individuals (let them be cars in road traffic or packets in the communication networks). In this paper, we study two other frameworks of routing games in which each of several players has an integer number of connections (which are population of packets) to route and where there is a constraint that a connection cannot be split. Through a particular game with a simple three link topology, we identify various novel and surprising properties of games within these frameworks. We show in particular that equilibria are non unique even in the potential game setting of Rosenthal with strictly convex link costs. We further show that non-symmetric equilibria arise in symmetric networks. I. INTRODUCTION A central question in routing games has been to establish conditions for the uniqueness of the equilibria, either in terms of the network topology or in terms of the costs. A survey on these issues is given in [1]. The question of uniqueness of equilibria has been studied in two different frameworks. The first, which we call F1, is the non-atomic routing introduced by Wardrop on 1952 in the context of road traffic in which each player (car) is infinitesimally small; a single car has a negligible impact on the congestion. Each car wishes to minimize its expected delay. Under arbitrary topology, such games are known to have a convex potential and thus have a unique equilibrium [2]. The second framework, denoted by F2, is splitable atomic games. There are finitely many players, each controlling the route of a population of individuals. This type of games have already been studied in the context of road traffic by Haurie and Marcotte [3] but have become central in the telecom community to model routing decisions of Internet Service Providers that can decide how to split the traffic of their subscribers among various routes so as to minimize network congestion [4]. In this paper we study properties of equilibria in two other frameworks of routing games which exhibit surprisin

    Bottleneck Routing Games with Low Price of Anarchy

    Full text link
    We study {\em bottleneck routing games} where the social cost is determined by the worst congestion on any edge in the network. In the literature, bottleneck games assume player utility costs determined by the worst congested edge in their paths. However, the Nash equilibria of such games are inefficient since the price of anarchy can be very high and proportional to the size of the network. In order to obtain smaller price of anarchy we introduce {\em exponential bottleneck games} where the utility costs of the players are exponential functions of their congestions. We find that exponential bottleneck games are very efficient and give a poly-log bound on the price of anarchy: O(log⁡L⋅log⁡∣E∣)O(\log L \cdot \log |E|), where LL is the largest path length in the players' strategy sets and EE is the set of edges in the graph. By adjusting the exponential utility costs with a logarithm we obtain games whose player costs are almost identical to those in regular bottleneck games, and at the same time have the good price of anarchy of exponential games.Comment: 12 page

    The Price of Anarchy in Cooperative Network Creation Games

    Get PDF
    In general, the games are played on a host graph, where each node is a selfish independent agent (player) and each edge has a fixed link creation cost \alpha. Together the agents create a network (a subgraph of the host graph) while selfishly minimizing the link creation costs plus the sum of the distances to all other players (usage cost). In this paper, we pursue two important facets of the network creation game. First, we study extensively a natural version of the game, called the cooperative model, where nodes can collaborate and share the cost of creating any edge in the host graph. We prove the first nontrivial bounds in this model, establishing that the price of anarchy is polylogarithmic in n for all values of α in complete host graphs. This bound is the first result of this type for any version of the network creation game; most previous general upper bounds are polynomial in n. Interestingly, we also show that equilibrium graphs have polylogarithmic diameter for the most natural range of \alpha (at most n polylg n). Second, we study the impact of the natural assumption that the host graph is a general graph, not necessarily complete. This model is a simple example of nonuniform creation costs among the edges (effectively allowing weights of \alpha and \infty). We prove the first assemblage of upper and lower bounds for this context, stablishing nontrivial tight bounds for many ranges of \alpha, for both the unilateral and cooperative versions of network creation. In particular, we establish polynomial lower bounds for both versions and many ranges of \alpha, even for this simple nonuniform cost model, which sharply contrasts the conjectured constant bounds for these games in complete (uniform) graphs
    • 

    corecore