3,657 research outputs found

    Nash equilibria in fisher market

    Get PDF
    Much work has been done on the computation of market equilibria. However due to strategic play by buyers, it is not clear whether these are actually observed in the market. Motivated by the observation that a buyer may derive a better payoff by feigning a different utility function and thereby manipulating the Fisher market equilibrium, we formulate the Fisher market game in which buyers strategize by posing different utility functions. We show that existence of a conflict-free allocation is a necessary condition for the Nash equilibria (NE) and also sufficient for the symmetric NE in this game. There are many NE with very different payoffs, and the Fisher equilibrium payoff is captured at a symmetric NE. We provide a complete polyhedral characterization of all the NE for the two-buyer market game. Surprisingly, all the NE of this game turn out to be symmetric and the corresponding payoffs constitute a piecewise linear concave curve. We also study the correlated equilibria of this game and show that third-party mediation does not help to achieve a better payoff than NE payoffs

    Nash Social Welfare Approximation for Strategic Agents

    Full text link
    The fair division of resources is an important age-old problem that has led to a rich body of literature. At the center of this literature lies the question of whether there exist fair mechanisms despite strategic behavior of the agents. A fundamental objective function used for measuring fair outcomes is the Nash social welfare, defined as the geometric mean of the agent utilities. This objective function is maximized by widely known solution concepts such as Nash bargaining and the competitive equilibrium with equal incomes. In this work we focus on the question of (approximately) implementing the Nash social welfare. The starting point of our analysis is the Fisher market, a fundamental model of an economy, whose benchmark is precisely the (weighted) Nash social welfare. We begin by studying two extreme classes of valuations functions, namely perfect substitutes and perfect complements, and find that for perfect substitutes, the Fisher market mechanism has a constant approximation: at most 2 and at least e1e. However, for perfect complements, the Fisher market does not work well, its bound degrading linearly with the number of players. Strikingly, the Trading Post mechanism---an indirect market mechanism also known as the Shapley-Shubik game---has significantly better performance than the Fisher market on its own benchmark. Not only does Trading Post achieve an approximation of 2 for perfect substitutes, but this bound holds for all concave utilities and becomes arbitrarily close to optimal for Leontief utilities (perfect complements), where it reaches (1+ϵ)(1+\epsilon) for every ϵ>0\epsilon > 0. Moreover, all the Nash equilibria of the Trading Post mechanism are pure for all concave utilities and satisfy an important notion of fairness known as proportionality

    Fisher Markets with Social Influence

    Full text link
    A Fisher market is an economic model of buyer and seller interactions in which each buyer's utility depends only on the bundle of goods she obtains. Many people's interests, however, are affected by their social interactions with others. In this paper, we introduce a generalization of Fisher markets, namely influence Fisher markets, which captures the impact of social influence on buyers' utilities. We show that competitive equilibria in influence Fisher markets correspond to generalized Nash equilibria in an associated pseudo-game, which implies the existence of competitive equilibria in all influence Fisher markets with continuous and concave utility functions. We then construct a monotone pseudo-game, whose variational equilibria and their duals together characterize competitive equilibria in influence Fisher markets with continuous, jointly concave, and homogeneous utility functions. This observation implies that competitive equilibria in these markets can be computed in polynomial time under standard smoothness assumptions on the utility functions. The dual of this second pseudo-game enables us to interpret the competitive equilibria of influence CCH Fisher markets as the solutions to a system of simultaneous Stackelberg games. Finally, we derive a novel first-order method that solves this Stackelberg system in polynomial time, prove that it is equivalent to computing competitive equilibrium prices via t\^{a}tonnement, and run experiments that confirm our theoretical results

    Computing large market equilibria using abstractions

    Full text link
    Computing market equilibria is an important practical problem for market design (e.g. fair division, item allocation). However, computing equilibria requires large amounts of information (e.g. all valuations for all buyers for all items) and compute power. We consider ameliorating these issues by applying a method used for solving complex games: constructing a coarsened abstraction of a given market, solving for the equilibrium in the abstraction, and lifting the prices and allocations back to the original market. We show how to bound important quantities such as regret, envy, Nash social welfare, Pareto optimality, and maximin share when the abstracted prices and allocations are used in place of the real equilibrium. We then study two abstraction methods of interest for practitioners: 1) filling in unknown valuations using techniques from matrix completion, 2) reducing the problem size by aggregating groups of buyers/items into smaller numbers of representative buyers/items and solving for equilibrium in this coarsened market. We find that in real data allocations/prices that are relatively close to equilibria can be computed from even very coarse abstractions

    On the Efficiency of the Walrasian Mechanism

    Full text link
    Central results in economics guarantee the existence of efficient equilibria for various classes of markets. An underlying assumption in early work is that agents are price-takers, i.e., agents honestly report their true demand in response to prices. A line of research in economics, initiated by Hurwicz (1972), is devoted to understanding how such markets perform when agents are strategic about their demands. This is captured by the \emph{Walrasian Mechanism} that proceeds by collecting reported demands, finding clearing prices in the \emph{reported} market via an ascending price t\^{a}tonnement procedure, and returns the resulting allocation. Similar mechanisms are used, for example, in the daily opening of the New York Stock Exchange and the call market for copper and gold in London. In practice, it is commonly observed that agents in such markets reduce their demand leading to behaviors resembling bargaining and to inefficient outcomes. We ask how inefficient the equilibria can be. Our main result is that the welfare of every pure Nash equilibrium of the Walrasian mechanism is at least one quarter of the optimal welfare, when players have gross substitute valuations and do not overbid. Previous analysis of the Walrasian mechanism have resorted to large market assumptions to show convergence to efficiency in the limit. Our result shows that approximate efficiency is guaranteed regardless of the size of the market

    Approximating the {Nash} Social Welfare with Budget-Additive Valuations

    No full text
    We present the first constant-factor approximation algorithm for maximizing the Nash social welfare when allocating indivisible items to agents with budget-additive valuation functions. Budget-additive valuations represent an important class of submodular functions. They have attracted a lot of research interest in recent years due to many interesting applications. For every ε>0\varepsilon > 0, our algorithm obtains a (2.404+ε)(2.404 + \varepsilon)-approximation in time polynomial in the input size and 1/ε1/\varepsilon. Our algorithm relies on rounding an approximate equilibrium in a linear Fisher market where sellers have earning limits (upper bounds on the amount of money they want to earn) and buyers have utility limits (upper bounds on the amount of utility they want to achieve). In contrast to markets with either earning or utility limits, these markets have not been studied before. They turn out to have fundamentally different properties. Although the existence of equilibria is not guaranteed, we show that the market instances arising from the Nash social welfare problem always have an equilibrium. Further, we show that the set of equilibria is not convex, answering a question of [Cole et al, EC 2017]. We design an FPTAS to compute an approximate equilibrium, a result that may be of independent interest
    corecore