6,553 research outputs found

    Design Considerations of a Sub-50 {\mu}W Receiver Front-end for Implantable Devices in MedRadio Band

    Full text link
    Emerging health-monitor applications, such as information transmission through multi-channel neural implants, image and video communication from inside the body etc., calls for ultra-low active power (<50μ{\mu}W) high data-rate, energy-scalable, highly energy-efficient (pJ/bit) radios. Previous literature has strongly focused on low average power duty-cycled radios or low power but low-date radios. In this paper, we investigate power performance trade-off of each front-end component in a conventional radio including active matching, down-conversion and RF/IF amplification and prioritize them based on highest performance/energy metric. The analysis reveals 50Ω{\Omega} active matching and RF gain is prohibitive for 50μ{\mu}W power-budget. A mixer-first architecture with an N-path mixer and a self-biased inverter based baseband LNA, designed in TSMC 65nm technology show that sub 50μ{\mu}W performance can be achieved up to 10Mbps (< 5pJ/b) with OOK modulation.Comment: Accepted to appear on International Conference on VLSI Design 2018 (VLSID

    Metodologia Per la Caratterizzazione di amplificatori a basso rumore per UMTS

    Get PDF
    In questo lavoro si presenta una metodologia di progettazione elettronica a livello di sistema, affrontando il problema della caratterizzazione dello spazio di progetto dell' amplificatore a basso rumore costituente il primo stadio di un front end a conversione diretta per UMTS realizzato in tecnologia CMOS con lunghezza di canale .18u. La metodologia è sviluppata al fine di valutare in modo quantititativo le specifiche ottime di sistema per il front-end stesso e si basa sul concetto di Piattaforma Analogica, che prevede la costruzione di un modello di prestazioni per il blocco analogico basato su campionamento statistico di indici di prestazioni del blocco stesso, misurati tramite simulazione di dimensionamenti dei componenti attivi e passivi soddisfacenti un set di equazioni specifico della topologia circuitale. Gli indici di prestazioni vengono successivamente ulizzati per parametrizzare modelli comportamentali utilizzati nelle fasi di ottimizzazione a livello di sistema. Modelli comportamentali atti a rappresentare i sistemi RF sono stati pertanto studiati per ottimizzare la scelta delle metriche di prestazioni. L'ottimizzazione dei set di equazioni atti a selezionare le configurazione di interesse per il campionamento ha al tempo stesso richiesto l'approfondimento dei modelli di dispositivi attivi validi in tutte le regioni di funzionamento, e lo studio dettagliato della progettazione degli amplificatori a basso rumore basati su degenerazione induttiva. Inoltre, il problema della modellizzazione a livello di sistema degli effetti della comunicazione tra LNA e Mixer è stato affrontato proponendo e analizzando diverse soluzioni. Il lavoro ha permesso di condurre un'ottimizzazione del front-end UMTS, giungendo a specifiche ottime a livello di sistema per l'amplificatore stesso

    The Expanded Very Large Array

    Full text link
    In almost 30 years of operation, the Very Large Array (VLA) has proved to be a remarkably flexible and productive radio telescope. However, the basic capabilities of the VLA have changed little since it was designed. A major expansion utilizing modern technology is currently underway to improve the capabilities of the VLA by at least an order of magnitude in both sensitivity and in frequency coverage. The primary elements of the Expanded Very Large Array (EVLA) project include new or upgraded receivers for continuous frequency coverage from 1 to 50 GHz, new local oscillator, intermediate frequency, and wide bandwidth data transmission systems to carry signals with 16 GHz total bandwidth from each antenna, and a new digital correlator with the capability to process this bandwidth with an unprecedented number of frequency channels for an imaging array. Also included are a new monitor and control system and new software that will provide telescope ease of use. Scheduled for completion in 2012, the EVLA will provide the world research community with a flexible, powerful, general-purpose telescope to address current and future astronomical issues.Comment: Added journal reference: published in Proceedings of the IEEE, Special Issue on Advances in Radio Astronomy, August 2009, vol. 97, No. 8, 1448-1462 Six figures, one tabl

    A 24-GHz SiGe Phased-Array Receiver—LO Phase-Shifting Approach

    Get PDF
    A local-oscillator phase-shifting approach is introduced to implement a fully integrated 24-GHz phased-array receiver using an SiGe technology. Sixteen phases of the local oscillator are generated in one oscillator core, resulting in a raw beam-forming accuracy of 4 bits. These phases are distributed to all eight receiving paths of the array by a symmetric network. The appropriate phase for each path is selected using high-frequency analog multiplexers. The raw beam-steering resolution of the array is better than 10 [degrees] for a forward-looking angle, while the array spatial selectivity, without any amplitude correction, is better than 20 dB. The overall gain of the array is 61 dB, while the array improves the input signal-to-noise ratio by 9 dB

    Tapered-amplified AR-coated laser diodes for Potassium and Rubidium atomic-physics experiments

    Full text link
    We present a system of room-temperature extended-cavity grating-diode lasers (ECDL) for production of light in the range 760-790nm. The extension of the tuning range towards the blue is permitted by the weak feedback in the cavity: the diodes are anti-reflection coated, and the grating has just 10% reflectance. The light is then amplified using semiconductor tapered amplifiers to give more than 400mW of power. The outputs are shown to be suitable for atomic physics experiments with potassium (767nm), rubidium (780nm) or both, of particular relevance to doubly-degenerate boson-fermion mixtures

    A Fully-Integrated Quad-Band GSM/GPRS CMOS Power Amplifier

    Get PDF
    Concentric distributed active transformers (DAT) are used to implement a fully-integrated quad-band power amplifier (PA) in a standard 130 nm CMOS process. The DAT enables the power amplifier to integrate the input and output matching networks on the same silicon die. The PA integrates on-chip closed-loop power control and operates under supply voltages from 2.9 V to 5.5 V in a standard micro-lead-frame package. It shows no oscillations, degradation, or failures for over 2000 hours of operation with a supply of 6 V at 135° under a VSWR of 15:1 at all phase angles and has also been tested for more than 2 million device-hours (with ongoing reliability monitoring) without a single failure under nominal operation conditions. It produces up to +35 dBm of RF power with power-added efficiency of 51%

    A tunable cavity-locked diode laser source for terahertz photomixing

    Get PDF
    An all solid-state approach to the precise frequency synthesis and control of widely tunable terahertz radiation by differencing continuous-wave diode lasers at 850 nm is reported in this paper. The difference frequency is synthesized by three fiber-coupled external-cavity laser diodes. Two of the lasers are Pound-Drever-Hall locked to different orders of a Fabry-Perot (FP) cavity, and the third is offset-frequency locked to the second of the cavity-locked lasers using a tunable microwave oscillator. The first cavity-locked laser and the offset-locked laser produce the difference frequency, whose value is accurately determined by the sum of an integer multiple of the free spectral range of the FP cavity and the offset frequency. The dual-frequency 850-nm output of the three laser system is amplified to 500 mW through two-frequency injection seeding of a single semiconductor tapered optical amplifier. As proof of precision frequency synthesis and control of tunability, the difference frequency is converted into a terahertz wave by optical-heterodyne photomixing in low-temperature-grown GaAs and used for the spectroscopy of simple molecules. The 3-dB spectral power bandwidth of the terahertz radiation is routinely observed to be ≾1 MHz. A simple, but highly accurate, method of obtaining an absolute frequency calibration is proposed and an absolute calibration of 10^(-7) demonstrated using the known frequencies of carbon monoxide lines between 0.23-1.27 THz

    A Polyphase Multipath Technique for Software-Defined Radio Transmitters

    Get PDF
    Transmitter circuits using large signal swings and hard-switched mixers are power-efficient, but also produce unwanted harmonics and sidebands, which are commonly removed using dedicated filters. This paper presents a polyphase multipath technique to relax or eliminate filters by canceling a multitude of harmonics and sidebands. Using this technique, a wideband and flexible power upconverter with a clean output spectrum is realized in 0.13-mum CMOS, aiming at a software-defined radio application. Prototype chips operate from DC to 2.4 GHz with spurs smaller than -40 dBc up to the 17th harmonic (18-path mode) or 5th harmonic (6-path mode) of the transmit frequency, without tuning or calibration. The transmitter delivers 8 mW of power to a 100-Omega load (2.54 Vpp-diff voltage swing) and the complete chip consumes 228 mW from a 1.2-V supply. It uses no filters, but only digital circuits and mixer
    corecore