97 research outputs found

    Narrow sieves for parameterized paths and packings

    Full text link
    We present randomized algorithms for some well-studied, hard combinatorial problems: the k-path problem, the p-packing of q-sets problem, and the q-dimensional p-matching problem. Our algorithms solve these problems with high probability in time exponential only in the parameter (k, p, q) and using polynomial space; the constant bases of the exponentials are significantly smaller than in previous works. For example, for the k-path problem the improvement is from 2 to 1.66. We also show how to detect if a d-regular graph admits an edge coloring with dd colors in time within a polynomial factor of O(2^{(d-1)n/2}). Our techniques build upon and generalize some recently published ideas by I. Koutis (ICALP 2009), R. Williams (IPL 2009), and A. Bj\"orklund (STACS 2010, FOCS 2010)

    Fast Algorithms for Parameterized Problems with Relaxed Disjointness Constraints

    Full text link
    In parameterized complexity, it is a natural idea to consider different generalizations of classic problems. Usually, such generalization are obtained by introducing a "relaxation" variable, where the original problem corresponds to setting this variable to a constant value. For instance, the problem of packing sets of size at most pp into a given universe generalizes the Maximum Matching problem, which is recovered by taking p=2p=2. Most often, the complexity of the problem increases with the relaxation variable, but very recently Abasi et al. have given a surprising example of a problem --- rr-Simple kk-Path --- that can be solved by a randomized algorithm with running time O(2O(klogrr))O^*(2^{O(k \frac{\log r}{r})}). That is, the complexity of the problem decreases with rr. In this paper we pursue further the direction sketched by Abasi et al. Our main contribution is a derandomization tool that provides a deterministic counterpart of the main technical result of Abasi et al.: the O(2O(klogrr))O^*(2^{O(k \frac{\log r}{r})}) algorithm for (r,k)(r,k)-Monomial Detection, which is the problem of finding a monomial of total degree kk and individual degrees at most rr in a polynomial given as an arithmetic circuit. Our technique works for a large class of circuits, and in particular it can be used to derandomize the result of Abasi et al. for rr-Simple kk-Path. On our way to this result we introduce the notion of representative sets for multisets, which may be of independent interest. Finally, we give two more examples of problems that were already studied in the literature, where the same relaxation phenomenon happens. The first one is a natural relaxation of the Set Packing problem, where we allow the packed sets to overlap at each element at most rr times. The second one is Degree Bounded Spanning Tree, where we seek for a spanning tree of the graph with a small maximum degree

    Parameterization Above a Multiplicative Guarantee

    Get PDF
    Parameterization above a guarantee is a successful paradigm in Parameterized Complexity. To the best of our knowledge, all fixed-parameter tractable problems in this paradigm share an additive form defined as follows. Given an instance (I,k) of some (parameterized) problem ? with a guarantee g(I), decide whether I admits a solution of size at least (at most) k+g(I). Here, g(I) is usually a lower bound (resp. upper bound) on the maximum (resp. minimum) size of a solution. Since its introduction in 1999 for Max SAT and Max Cut (with g(I) being half the number of clauses and half the number of edges, respectively, in the input), analysis of parameterization above a guarantee has become a very active and fruitful topic of research. We highlight a multiplicative form of parameterization above a guarantee: Given an instance (I,k) of some (parameterized) problem ? with a guarantee g(I), decide whether I admits a solution of size at least (resp. at most) k ? g(I). In particular, we study the Long Cycle problem with a multiplicative parameterization above the girth g(I) of the input graph, and provide a parameterized algorithm for this problem. Apart from being of independent interest, this exemplifies how parameterization above a multiplicative guarantee can arise naturally. We also show that, for any fixed constant ?>0, multiplicative parameterization above g(I)^(1+?) of Long Cycle yields para-NP-hardness, thus our parameterization is tight in this sense. We complement our main result with the design (or refutation of the existence) of algorithms for other problems parameterized multiplicatively above girth

    Mixing Color Coding-Related Techniques

    Full text link
    Narrow sieves, representative sets and divide-and-color are three breakthrough color coding-related techniques, which led to the design of extremely fast parameterized algorithms. We present a novel family of strategies for applying mixtures of them. This includes: (a) a mix of representative sets and narrow sieves; (b) a faster computation of representative sets under certain separateness conditions, mixed with divide-and-color and a new technique, "balanced cutting"; (c) two mixtures of representative sets, iterative compression and a new technique, "unbalanced cutting". We demonstrate our strategies by obtaining, among other results, significantly faster algorithms for kk-Internal Out-Branching and Weighted 3-Set kk-Packing, and a framework for speeding-up the previous best deterministic algorithms for kk-Path, kk-Tree, rr-Dimensional kk-Matching, Graph Motif and Partial Cover

    Fast Witness Extraction Using a Decision Oracle

    Full text link
    The gist of many (NP-)hard combinatorial problems is to decide whether a universe of nn elements contains a witness consisting of kk elements that match some prescribed pattern. For some of these problems there are known advanced algebra-based FPT algorithms which solve the decision problem but do not return the witness. We investigate techniques for turning such a YES/NO-decision oracle into an algorithm for extracting a single witness, with an objective to obtain practical scalability for large values of nn. By relying on techniques from combinatorial group testing, we demonstrate that a witness may be extracted with O(klogn)O(k\log n) queries to either a deterministic or a randomized set inclusion oracle with one-sided probability of error. Furthermore, we demonstrate through implementation and experiments that the algebra-based FPT algorithms are practical, in particular in the setting of the kk-path problem. Also discussed are engineering issues such as optimizing finite field arithmetic.Comment: Journal version, 16 pages. Extended abstract presented at ESA'1

    Representative set statements for delta-matroids and the Mader delta-matroid

    Full text link
    We present representative sets-style statements for linear delta-matroids, which are set systems that generalize matroids, with important connections to matching theory and graph embeddings. Furthermore, our proof uses a new approach of sieving polynomial families, which generalizes the linear algebra approach of the representative sets lemma to a setting of bounded-degree polynomials. The representative sets statements for linear delta-matroids then follow by analyzing the Pfaffian of the skew-symmetric matrix representing the delta-matroid. Applying the same framework to the determinant instead of the Pfaffian recovers the representative sets lemma for linear matroids. Altogether, this significantly extends the toolbox available for kernelization. As an application, we show an exact sparsification result for Mader networks: Let G=(V,E)G=(V,E) be a graph and T\mathcal{T} a partition of a set of terminals TV(G)T \subseteq V(G), T=k|T|=k. A T\mathcal{T}-path in GG is a path with endpoints in distinct parts of T\mathcal{T} and internal vertices disjoint from TT. In polynomial time, we can derive a graph G=(V,E)G'=(V',E') with TV(G)T \subseteq V(G'), such that for every subset STS \subseteq T there is a packing of T\mathcal{T}-paths with endpoints SS in GG if and only if there is one in GG', and V(G)=O(k3)|V(G')|=O(k^3). This generalizes the (undirected version of the) cut-covering lemma, which corresponds to the case that T\mathcal{T} contains only two blocks. To prove the Mader network sparsification result, we furthermore define the class of Mader delta-matroids, and show that they have linear representations. This should be of independent interest

    Approximate Counting of k-Paths: Deterministic and in Polynomial Space

    Get PDF
    A few years ago, Alon et al. [ISMB 2008] gave a simple randomized O((2e)^km epsilon^{-2})-time exponential-space algorithm to approximately compute the number of paths on k vertices in a graph G up to a multiplicative error of 1 +/- epsilon. Shortly afterwards, Alon and Gutner [IWPEC 2009, TALG 2010] gave a deterministic exponential-space algorithm with running time (2e)^{k+O(log^3k)}m log n whenever epsilon^{-1}=k^{O(1)}. Recently, Brand et al. [STOC 2018] provided a speed-up at the cost of reintroducing randomization. Specifically, they gave a randomized O(4^km epsilon^{-2})-time exponential-space algorithm. In this article, we revisit the algorithm by Alon and Gutner. We modify the foundation of their work, and with a novel twist, obtain the following results. - We present a deterministic 4^{k+O(sqrt{k}(log^2k+log^2 epsilon^{-1}))}m log n-time polynomial-space algorithm. This matches the running time of the best known deterministic polynomial-space algorithm for deciding whether a given graph G has a path on k vertices. - Additionally, we present a randomized 4^{k+O(log k(log k + log epsilon^{-1}))}m log n-time polynomial-space algorithm. While Brand et al. make non-trivial use of exterior algebra, our algorithm is very simple; we only make elementary use of the probabilistic method. Thus, the algorithm by Brand et al. runs in time 4^{k+o(k)}m whenever epsilon^{-1}=2^{o(k)}, while our deterministic and randomized algorithms run in time 4^{k+o(k)}m log n whenever epsilon^{-1}=2^{o(k^{1/4})} and epsilon^{-1}=2^{o(k/(log k))}, respectively. Prior to our work, no 2^{O(k)}n^{O(1)}-time polynomial-space algorithm was known. Additionally, our approach is embeddable in the classic framework of divide-and-color, hence it immediately extends to approximate counting of graphs of bounded treewidth; in comparison, Brand et al. note that their approach is limited to graphs of bounded pathwidth
    corecore