3,267 research outputs found

    Design and Analysis of Bow-tie Antennas for GPR Applications

    Get PDF
    Ground penetrating radar (GPR) is a non-destructive testing (NDT) technology, which uses electromagnetic (EM) techniques to map the buried structures in the shallow sub-surface. The efficiency of the GPR system significantly depends on the antenna performance as the signal has to propagate through lossy and inhomogeneous media. The GPR antennas should possess a low frequency of operation for more depth of penetration, ultra-wide band (UWB) performance for high resolution, high gain and efficiency for increasing the receiving power, minimal ringing, compact and lightweight for ease of GPR surveying. Bow-tie antennas are widely used as it can provide most of the above mentioned antenna performances. Though a number of researchers have carried out their research work for the design and development of the Bow-tie antennas for the GPR applications, still there is ample of scopes for the improvement of this antenna to achieve compactness and lightweight, reduced end-fire reflections, better gain and directivity, high radiation efficiency, etc. In this work, two improved Bow-tie antennas for the GPR applications have been proposed. A compact resistive loaded Bowtie antenna is designed and investigated which can provide an impedance bandwidth of 167% (0.4 - 4.5 GHz) with reduced end-fire reflections. The compactness is achieved by using a thin sheet of graphite for the resistive loading instead of using volumetric electromagnetic absorbing materials. The end-fire reflections are minimized by blending the sharp corners of the Bowtie antenna. However, the radiation efficiency and gain of the antenna are degraded significantly due to resistive loading which has been in the second proposed antenna by using an improved RC-loading scheme. The improved and compact RC-loaded Bowtie antenna with metamaterial based planar lens is designed and investigated which can operate over a UWB bandwidth of 3.71GHz (0.29 GHz - 4.5 GHz). This provides a maximum gain of 12.4 dB and maximum radiation efficiency of 94 % throughout the operating band. An improvement in the gain of 5 dB in the bore side direction is achieved by using a modified meta-material lens. The performance of both the designed antennas is investigated in the temperature varying environment and GPR scenario at the simulation level. A comparative analysis of the designed antennas with the other reported antennas indicates that the proposed antennas are advantageous for the GPR applications

    Developing a person guidance module for hospital robots

    Get PDF
    This dissertation describes the design and implementation of the Person Guidance Module (PGM) that enables the IWARD (Intelligent Robot Swarm for attendance, Recognition, Cleaning and delivery) base robot to offer route guidance service to the patients or visitors inside the hospital arena. One of the common problems encountered in huge hospital buildings today is foreigners not being able to find their way around in the hospital. Although there are a variety of guide robots currently existing on the market and offering a wide range of guidance and related activities, they do not fit into the modular concept of the IWARD project. The PGM features a robust and foolproof non-hierarchical sensor fusion approach of an active RFID, stereovision and cricket mote sensor for guiding a patient to the X-ray room, or a visitor to a patient’s ward in every possible scenario in a complex, dynamic and crowded hospital environment. Moreover, the speed of the robot can be adjusted automatically according to the pace of the follower for physical comfort using this system. Furthermore, the module performs these tasks in any unconstructed environment solely from a robot’s onboard perceptual resources in order to limit the hardware installation costs and therefore the indoor setting support. Similar comprehensive solution in one single platform has remained elusive in existing literature. The finished module can be connected to any IWARD base robot using quick-change mechanical connections and standard electrical connections. The PGM module box is equipped with a Gumstix embedded computer for all module computing which is powered up automatically once the module box is inserted into the robot. In line with the general software architecture of the IWARD project, all software modules are developed as Orca2 components and cross-complied for Gumstix’s XScale processor. To support standardized communication between different software components, Internet Communications Engine (Ice) has been used as middleware. Additionally, plug-and-play capabilities have been developed and incorporated so that swarm system is aware at all times of which robot is equipped with PGM. Finally, in several field trials in hospital environments, the person guidance module has shown its suitability for a challenging real-world application as well as the necessary user acceptance
    corecore