2,081 research outputs found

    TOGGLE PRM: A SIMULTANEOUS MAPPING OF CFREE AND COBSTACLE FOR USE IN PROBABILISTIC ROADMAP METHODS

    Get PDF
    Motion planning for robotic applications is difficult. This is a widely studied problem in which the best known deterministic solution is doubly exponential in the dimensionality of the problem. A class of probabilistic planners, called sampling-based planners, have shown much success in this area, but still show weakness for planning in difficult parts of the space, namely narrow passages. The problem space is made of two subsets - free space and collision space, representing valid and invalid robot positions. A general method for probabilistic planners is the probabilistic roadmap method (PRM) which maps only free space to find a solution. This thesis proposes a new strategy, Toggle PRM, for probabilistic roadmap planners, which simultaneously maps both free space and collision space in order to guide the solution more efficiently. All sampled robotic configurations are kept in two separate maps. When the connection attempts between configurations in one roadmap fail, the witness to the failure is retained as a configuration in the opposing roadmap. By mapping both spaces, sampling density in narrow passages is greatly increased. A theoretical and experimental analysis of Toggle PRM shows the independence from the volume of a narrow passage and the volume of the obstacles surrounding the passage for sampling, overcoming a previous challenge of probabilistic planning. Additionally, Toggle PRM has increased efficiency as compared to other common sampling techniques in various motion planning problems because of this improved sampling in narrow passages

    Balancing Global Exploration and Local-connectivity Exploitation with Rapidly-exploring Random disjointed-Trees

    Full text link
    Sampling efficiency in a highly constrained environment has long been a major challenge for sampling-based planners. In this work, we propose Rapidly-exploring Random disjointed-Trees* (RRdT*), an incremental optimal multi-query planner. RRdT* uses multiple disjointed-trees to exploit local-connectivity of spaces via Markov Chain random sampling, which utilises neighbourhood information derived from previous successful and failed samples. To balance local exploitation, RRdT* actively explore unseen global spaces when local-connectivity exploitation is unsuccessful. The active trade-off between local exploitation and global exploration is formulated as a multi-armed bandit problem. We argue that the active balancing of global exploration and local exploitation is the key to improving sample efficient in sampling-based motion planners. We provide rigorous proofs of completeness and optimal convergence for this novel approach. Furthermore, we demonstrate experimentally the effectiveness of RRdT*'s locally exploring trees in granting improved visibility for planning. Consequently, RRdT* outperforms existing state-of-the-art incremental planners, especially in highly constrained environments.Comment: Submitted to IEEE International Conference on Robotics and Automation (ICRA) 201

    RMPD - A Recursive Mid-Point Displacement Algorithm for Path Planning

    Full text link
    Motivated by what is required for real-time path planning, the paper starts out by presenting sRMPD, a new recursive "local" planner founded on the key notion that, unless made necessary by an obstacle, there must be no deviation from the shortest path between any two points, which would normally be a straight line path in the configuration space. Subsequently, we increase the power of sRMPD by using it as a "connect" subroutine call in a higher-level sampling-based algorithm mRMPD that is inspired by multi-RRT. As a consequence, mRMPD spawns a larger number of space exploring trees in regions of the configuration space that are characterized by a higher density of obstacles. The overall effect is a hybrid tree growing strategy with a trade-off between random exploration as made possible by multi-RRT based logic and immediate exploitation of opportunities to connect two states as made possible by sRMPD. The mRMPD planner can be biased with regard to this trade-off for solving different kinds of planning problems efficiently. Based on the test cases we have run, our experiments show that mRMPD can reduce planning time by up to 80% compared to basic RRT

    Experience-Based Planning with Sparse Roadmap Spanners

    Full text link
    We present an experienced-based planning framework called Thunder that learns to reduce computation time required to solve high-dimensional planning problems in varying environments. The approach is especially suited for large configuration spaces that include many invariant constraints, such as those found with whole body humanoid motion planning. Experiences are generated using probabilistic sampling and stored in a sparse roadmap spanner (SPARS), which provides asymptotically near-optimal coverage of the configuration space, making storing, retrieving, and repairing past experiences very efficient with respect to memory and time. The Thunder framework improves upon past experience-based planners by storing experiences in a graph rather than in individual paths, eliminating redundant information, providing more opportunities for path reuse, and providing a theoretical limit to the size of the experience graph. These properties also lead to improved handling of dynamically changing environments, reasoning about optimal paths, and reducing query resolution time. The approach is demonstrated on a 30 degrees of freedom humanoid robot and compared with the Lightning framework, an experience-based planner that uses individual paths to store past experiences. In environments with variable obstacles and stability constraints, experiments show that Thunder is on average an order of magnitude faster than Lightning and planning from scratch. Thunder also uses 98.8% less memory to store its experiences after 10,000 trials when compared to Lightning. Our framework is implemented and freely available in the Open Motion Planning Library.Comment: Submitted to ICRA 201

    On the Power of Manifold Samples in Exploring Configuration Spaces and the Dimensionality of Narrow Passages

    Full text link
    We extend our study of Motion Planning via Manifold Samples (MMS), a general algorithmic framework that combines geometric methods for the exact and complete analysis of low-dimensional configuration spaces with sampling-based approaches that are appropriate for higher dimensions. The framework explores the configuration space by taking samples that are entire low-dimensional manifolds of the configuration space capturing its connectivity much better than isolated point samples. The contributions of this paper are as follows: (i) We present a recursive application of MMS in a six-dimensional configuration space, enabling the coordination of two polygonal robots translating and rotating amidst polygonal obstacles. In the adduced experiments for the more demanding test cases MMS clearly outperforms PRM, with over 20-fold speedup in a coordination-tight setting. (ii) A probabilistic completeness proof for the most prevalent case, namely MMS with samples that are affine subspaces. (iii) A closer examination of the test cases reveals that MMS has, in comparison to standard sampling-based algorithms, a significant advantage in scenarios containing high-dimensional narrow passages. This provokes a novel characterization of narrow passages which attempts to capture their dimensionality, an attribute that had been (to a large extent) unattended in previous definitions.Comment: 20 page
    • …
    corecore