166 research outputs found

    Synthesis methods for linear-phase FIR filters with a piecewise-polynomial impulse response

    Get PDF
    his thesis concentrates on synthesis methods for linear-phase finite-impulse response filters with a piecewise-polynomial impulse response. One of the objectives has been to find integer-valued coefficients to efficiently implement filters of the piecewise-polynomial impulse response approach introduced by Saram¨aki and Mitra. In this method, the impulse response is divided into blocks of equal length and each block is created by a polynomial of a given degree. The arithmetic complexity of these filters depends on the polynomial degree and the number of blocks. By using integer-valued coefficients it is possible to make the implementation of the subfilters, which generates the polynomials, multiplication-free. The main focus has been on finding computationally-efficient synthesis methods by using a piecewise-polynomial and a piecewise-polynomial-sinusoidal impulse responses to make it possible to implement high-speed, low-power, highly integrated digital signal processing systems. The earlier method by Chu and Burrus has been studied. The overall impulse response of the approach proposed in this thesis consists of the sum of several polynomial-form responses. The arithmetic complexity depends on the polynomial degree and the number of polynomial-form responses. The piecewise-polynomial-sinusoidal approach is a modification of the piecewise-polynomial approach. The subresponses are multiplied by a sinusoidal function and an arbitrary number of separate center coefficients is added. Thereby, the arithmetic complexity depends also on the number of complex multipliers and separately generated center coefficients. The filters proposed in this thesis are optimized by using linear programming methods

    Digital Filter Design Using Improved Teaching-Learning-Based Optimization

    Get PDF
    Digital filters are an important part of digital signal processing systems. Digital filters are divided into finite impulse response (FIR) digital filters and infinite impulse response (IIR) digital filters according to the length of their impulse responses. An FIR digital filter is easier to implement than an IIR digital filter because of its linear phase and stability properties. In terms of the stability of an IIR digital filter, the poles generated in the denominator are subject to stability constraints. In addition, a digital filter can be categorized as one-dimensional or multi-dimensional digital filters according to the dimensions of the signal to be processed. However, for the design of IIR digital filters, traditional design methods have the disadvantages of easy to fall into a local optimum and slow convergence. The Teaching-Learning-Based optimization (TLBO) algorithm has been proven beneficial in a wide range of engineering applications. To this end, this dissertation focusses on using TLBO and its improved algorithms to design five types of digital filters, which include linear phase FIR digital filters, multiobjective general FIR digital filters, multiobjective IIR digital filters, two-dimensional (2-D) linear phase FIR digital filters, and 2-D nonlinear phase FIR digital filters. Among them, linear phase FIR digital filters, 2-D linear phase FIR digital filters, and 2-D nonlinear phase FIR digital filters use single-objective type of TLBO algorithms to optimize; multiobjective general FIR digital filters use multiobjective non-dominated TLBO (MOTLBO) algorithm to optimize; and multiobjective IIR digital filters use MOTLBO with Euclidean distance to optimize. The design results of the five types of filter designs are compared to those obtained by other state-of-the-art design methods. In this dissertation, two major improvements are proposed to enhance the performance of the standard TLBO algorithm. The first improvement is to apply a gradient-based learning to replace the TLBO learner phase to reduce approximation error(s) and CPU time without sacrificing design accuracy for linear phase FIR digital filter design. The second improvement is to incorporate Manhattan distance to simplify the procedure of the multiobjective non-dominated TLBO (MOTLBO) algorithm for general FIR digital filter design. The design results obtained by the two improvements have demonstrated their efficiency and effectiveness

    Harnessing optical micro-combs for microwave photonics

    Full text link
    In the past decade, optical frequency combs generated by high-Q micro-resonators, or micro-combs, which feature compact device footprints, high energy efficiency, and high-repetition-rates in broad optical bandwidths, have led to a revolution in a wide range of fields including metrology, mode-locked lasers, telecommunications, RF photonics, spectroscopy, sensing, and quantum optics. Among these, an application that has attracted great interest is the use of micro-combs for RF photonics, where they offer enhanced functionalities as well as reduced size and power consumption over other approaches. This article reviews the recent advances in this emerging field. We provide an overview of the main achievements that have been obtained to date, and highlight the strong potential of micro-combs for RF photonics applications. We also discuss some of the open challenges and limitations that need to be met for practical applications.Comment: 32 Pages, 13 Figures, 172 Reference

    Window Functions and Their Applications in Signal Processing

    Get PDF
    Window functions—otherwise known as weighting functions, tapering functions, or apodization functions—are mathematical functions that are zero-valued outside the chosen interval. They are well established as a vital part of digital signal processing. Window Functions and their Applications in Signal Processing presents an exhaustive and detailed account of window functions and their applications in signal processing, focusing on the areas of digital spectral analysis, design of FIR filters, pulse compression radar, and speech signal processing. Comprehensively reviewing previous research and recent developments, this book: Provides suggestions on how to choose a window function for particular applications Discusses Fourier analysis techniques and pitfalls in the computation of the DFT Introduces window functions in the continuous-time and discrete-time domains Considers two implementation strategies of window functions in the time- and frequency domain Explores well-known applications of window functions in the fields of radar, sonar, biomedical signal analysis, audio processing, and synthetic aperture rada

    Window Functions and Their Applications in Signal Processing

    Get PDF
    Window functions—otherwise known as weighting functions, tapering functions, or apodization functions—are mathematical functions that are zero-valued outside the chosen interval. They are well established as a vital part of digital signal processing. Window Functions and their Applications in Signal Processing presents an exhaustive and detailed account of window functions and their applications in signal processing, focusing on the areas of digital spectral analysis, design of FIR filters, pulse compression radar, and speech signal processing. Comprehensively reviewing previous research and recent developments, this book: Provides suggestions on how to choose a window function for particular applications Discusses Fourier analysis techniques and pitfalls in the computation of the DFT Introduces window functions in the continuous-time and discrete-time domains Considers two implementation strategies of window functions in the time- and frequency domain Explores well-known applications of window functions in the fields of radar, sonar, biomedical signal analysis, audio processing, and synthetic aperture rada

    Ultra-Wideband Array Antennas

    Get PDF
    Wireless communication has become an indispensable part of modern life. One of the mostimportant components of wireless communication systems are antennas, termed as "eyes" and "ears" of communication systems. A printed antenna, one of the most commercial antennas, is widely used for civil and military applications, i.e., for communication systems, radar systems, satellite and transportation systems since the printed antenna provides some benefits such as light weight, compact structure and low manufacturing cost. A printed antenna design for a communication technology called Ultra-Wide Band (UWB) is discussed in this dissertation. Ultra-Wide Band communication has undergone intensive investigation in the past decade since the Federal Communications Commission (FCC) released the free license spectral mask operation of the UWB radio over 7.5 GHz bandwidth from 3.1 to 10.6 GHz (UWB frequency range), a technology promising high-rate data transmission over a short range. On the other hand, a UWB communication system requires extremely low radiation power to avoid interferences to other communication systems. As an answer for this challenge, three strategies based on antenna aspects are proposed in the frame of this work. The first strategy is to design a compact and directive single radiator. The printed monopole antenna was selected as the radiator, in particular the printed circular monopole antenna (PCMA), was reinvestigated and modified as a directive PCMA. Secondly, a UWB array antenna employing the directive PCMA element was designed to focus the radiation toward a certain direction. Some matching techniques were combined in the design to achieve impedance matching over the UWB frequency range. The measurement result of the antenna under test showed a focused radiation pattern and the impedance matching better than -10 dB was achieved for the whole frequency band. The concept of frequency invariant beam pattern antenna arrays is applied as the third strategy. The concept, adopted from the broadband sensor’s theory for acoustic purpose, is applied to the microwave frame. Based on this concept, a prototype of the PCMA array fed by a set of low pass filters was realized in planar technology at the first time to achieve frequency invariant beam patterns. The measurement of the fabricated antenna showed that the beamwidth can be kept constant over the whole frequency band

    Regular and irregular signal resampling

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2002.Includes bibliographical references (p. 107-110).In this thesis, we consider three main resampling problems. The first is the sampling rate conversion problem in which the input and output grids are both regularly spaced. It is known that the output signal is obtained by applying a time-varying filter to the input signal. The existing methods for finding the coefficients of this filter inherently tradeoff computational and memory requirements. Instead, we present a recursive scheme for which the computational and memory requirements are both low. In the second problem which we consider, we are given the instantaneous samples of a continuous-time (CT) signal taken on an irregular grid from which we wish to obtain samples on a regular grid. This is referred to as the nonuniform sampling problem. We present a noniterative algorithm for solving this problem, which, in contrast to the known iterative algorithms, can easily be implemented in real time. We show that each output point may be calculated by using only a finite number of input points, with an error which falls exponentially in the number of points used. Finally we look at the nonuniform lowpass reconstruction problem. In this case, we are given regular samples of a CT signal from which we wish to obtain amplitudes for a sequence of irregularly spaced impulses. These amplitudes are chosen so that the original CT signal may be recovered by lowpass filtering this sequence of impulses. We present a general solution which exhibits the same exponential localization obtained for the nonuniform sampling problem. We also consider a special case in which the irregular grid is obtained by deleting a single point from an otherwise regular grid. We refer(cont.) to this as the missing pixel problem, since it may be used to model cases in which a single defective element is present in a regularly spaced array such as the pixel arrays used in flat-panel video displays. We present an optimal solution which minimizes the energy of the reconstruction error, subject to the constraint that only a given number of pixels may be adjusted.by Andrew I. Russell.Ph.D
    corecore