745 research outputs found

    Analysis Of Data Stratification In A Multi-Sensor Fingerprint Dataset Using Match Score Statistics

    Get PDF
    Biometric data is an essential feature employed in testing the performance of any real time biometric recognition system prior to its usage. The variations introduced in the match performance critically determine the authenticity of the biometric data to be able to be used in an everyday scenario for the testing of biometric verification systems. This study in totality aims at understanding the impact of data stratification of a such a biometric test dataset on the match performance of each of its stratum. In order to achieve this goal, the fingerprint dataset of the West Virginia University\u27s 2012 BioCOP has been employed which is a part of the many multimodal biometric data collection projects that the University has accomplished. This test dataset has been initially segmented based on the scanners employed in the process of data acquisition to check for the variations in match performance with reference to the acquisition device. The secondary stage of data stratification included the creation of stratum based on the demographic features of the subjects in the dataset.;The main objectives this study aims to achieve are:;• Developing a framework to assess the match score distributions of each stratum..;• Assessing the match performance of demographic strata in comparison to the total dataset..;• Statistical match performance evaluation using match score statistics..;Following the generation of genuine and imposter match score distributions , Receiver Operating Characteristic Curves (ROC) were plotted to compare the match performance of each demographic stratum with respect to the total dataset. The divergence measures KLD and JSD have been calculated which signify the amount of variation between the match score distributions of each stratum. With the help of these procedures, the task of estimating the effect of data stratification on the match performance has been accomplished which serves as a measure of understanding the impact of this fingerprint dataset when used for biometric testing purposes

    A pilot study on discriminative power of features of superficial venous pattern in the hand

    Get PDF
    The goal of the project is to develop an automatic way to identify, represent the superficial vasculature of the back hand and investigate its discriminative power as biometric feature. A prototype of a system that extracts the superficial venous pattern of infrared images of back hands will be described. Enhancement algorithms are used to solve the lack of contrast of the infrared images. To trace the veins, a vessel tracking technique is applied, obtaining binary masks of the superficial venous tree. Successively, a method to estimate the blood vessels calibre, length, the location and angles of vessel junctions, will be presented. The discriminative power of these features will be studied, independently and simultaneously, considering two features vector. Pattern matching of two vasculature maps will be performed, to investigate the uniqueness of the vessel network / L’obiettivo del progetto è di sviluppare un metodo automatico per identificare e rappresentare la rete vascolare superficiale presente nel dorso della mano ed investigare sul suo potere discriminativo come caratteristica biometrica. Un prototipo di sistema che estrae l’albero superficiale delle vene da immagini infrarosse del dorso della mano sarà descritto. Algoritmi per il miglioramento del contrasto delle immagini infrarosse saranno applicati. Per tracciare le vene, una tecnica di tracking verrà utilizzata per ottenere una maschera binaria della rete vascolare. Successivamente, un metodo per stimare il calibro e la lunghezza dei vasi sanguigni, la posizione e gli angoli delle giunzioni sarà trattato. Il potere discriminativo delle precedenti caratteristiche verrà studiato ed una tecnica di pattern matching di due modelli vascolari sarà presentata per verificare l’unicità di quest

    Recent Application in Biometrics

    Get PDF
    In the recent years, a number of recognition and authentication systems based on biometric measurements have been proposed. Algorithms and sensors have been developed to acquire and process many different biometric traits. Moreover, the biometric technology is being used in novel ways, with potential commercial and practical implications to our daily activities. The key objective of the book is to provide a collection of comprehensive references on some recent theoretical development as well as novel applications in biometrics. The topics covered in this book reflect well both aspects of development. They include biometric sample quality, privacy preserving and cancellable biometrics, contactless biometrics, novel and unconventional biometrics, and the technical challenges in implementing the technology in portable devices. The book consists of 15 chapters. It is divided into four sections, namely, biometric applications on mobile platforms, cancelable biometrics, biometric encryption, and other applications. The book was reviewed by editors Dr. Jucheng Yang and Dr. Norman Poh. We deeply appreciate the efforts of our guest editors: Dr. Girija Chetty, Dr. Loris Nanni, Dr. Jianjiang Feng, Dr. Dongsun Park and Dr. Sook Yoon, as well as a number of anonymous reviewers

    Investigation of Multimodal Template-Free Biometric Techniques and Associated Exception Handling

    Get PDF
    The Biometric systems are commonly used as a fundamental tool by both government and private sector organizations to allow restricted access to sensitive areas, to identify the criminals by the police and to authenticate the identification of individuals requesting to access to certain personal and confidential services. The applications of these identification tools have created issues of security and privacy relating to personal, commercial and government identities. Over the last decade, reports of increasing insecurity to the personal data of users in the public and commercial domain applications has prompted the development of more robust and sound measures to protect the personal data of users from being stolen and spoofing. The present study aimed to introduce the scheme for integrating direct and indirect biometric key generation schemes with the application of Shamir‘s secret sharing algorithm in order to address the two disadvantages: revocability of the biometric key and the exception handling of biometric modality. This study used two different approaches for key generation using Shamir‘s secret sharing scheme: template based approach for indirect key generation and template-free. The findings of this study demonstrated that the encryption key generated by the proposed system was not required to be stored in the database which prevented the attack on the privacy of the data of the individuals from the hackers. Interestingly, the proposed system was also able to generate multiple encryption keys with varying lengths. Furthermore, the results of this study also offered the flexibility of providing the multiple keys for different applications for each user. The results from this study, consequently, showed the considerable potential and prospect of the proposed scheme to generate encryption keys directly and indirectly from the biometric samples, which could enhance its success in biometric security field

    Biometric Systems

    Get PDF
    Because of the accelerating progress in biometrics research and the latest nation-state threats to security, this book's publication is not only timely but also much needed. This volume contains seventeen peer-reviewed chapters reporting the state of the art in biometrics research: security issues, signature verification, fingerprint identification, wrist vascular biometrics, ear detection, face detection and identification (including a new survey of face recognition), person re-identification, electrocardiogram (ECT) recognition, and several multi-modal systems. This book will be a valuable resource for graduate students, engineers, and researchers interested in understanding and investigating this important field of study

    Intelligent interface agents for biometric applications

    Get PDF
    This thesis investigates the benefits of applying the intelligent agent paradigm to biometric identity verification systems. Multimodal biometric systems, despite their additional complexity, hold the promise of providing a higher degree of accuracy and robustness. Multimodal biometric systems are examined in this work leading to the design and implementation of a novel distributed multi-modal identity verification system based on an intelligent agent framework. User interface design issues are also important in the domain of biometric systems and present an exceptional opportunity for employing adaptive interface agents. Through the use of such interface agents, system performance may be improved, leading to an increase in recognition rates over a non-adaptive system while producing a more robust and agreeable user experience. The investigation of such adaptive systems has been a focus of the work reported in this thesis. The research presented in this thesis is divided into two main parts. Firstly, the design, development and testing of a novel distributed multi-modal authentication system employing intelligent agents is presented. The second part details design and implementation of an adaptive interface layer based on interface agent technology and demonstrates its integration with a commercial fingerprint recognition system. The performance of these systems is then evaluated using databases of biometric samples gathered during the research. The results obtained from the experimental evaluation of the multi-modal system demonstrated a clear improvement in the accuracy of the system compared to a unimodal biometric approach. The adoption of the intelligent agent architecture at the interface level resulted in a system where false reject rates were reduced when compared to a system that did not employ an intelligent interface. The results obtained from both systems clearly express the benefits of combining an intelligent agent framework with a biometric system to provide a more robust and flexible application

    Biometric Systems

    Get PDF
    Biometric authentication has been widely used for access control and security systems over the past few years. The purpose of this book is to provide the readers with life cycle of different biometric authentication systems from their design and development to qualification and final application. The major systems discussed in this book include fingerprint identification, face recognition, iris segmentation and classification, signature verification and other miscellaneous systems which describe management policies of biometrics, reliability measures, pressure based typing and signature verification, bio-chemical systems and behavioral characteristics. In summary, this book provides the students and the researchers with different approaches to develop biometric authentication systems and at the same time includes state-of-the-art approaches in their design and development. The approaches have been thoroughly tested on standard databases and in real world applications

    Palmprint Gender Classification Using Deep Learning Methods

    Get PDF
    Gender identification is an important technique that can improve the performance of authentication systems by reducing searching space and speeding up the matching process. Several biometric traits have been used to ascertain human gender. Among them, the human palmprint possesses several discriminating features such as principal-lines, wrinkles, ridges, and minutiae features and that offer cues for gender identification. The goal of this work is to develop novel deep-learning techniques to determine gender from palmprint images. PolyU and CASIA palmprint databases with 90,000 and 5502 images respectively were used for training and testing purposes in this research. After ROI extraction and data augmentation were performed, various convolutional and deep learning-based classification approaches were empirically designed, optimized, and tested. Results of gender classification as high as 94.87% were achieved on the PolyU palmprint database and 90.70% accuracy on the CASIA palmprint database. Optimal performance was achieved by combining two different pre-trained and fine-tuned deep CNNs (VGGNet and DenseNet) through score level average fusion. In addition, Gradient-weighted Class Activation Mapping (Grad-CAM) was also implemented to ascertain which specific regions of the palmprint are most discriminative for gender classification

    Fingerprint Identification System Using Neural Networks

    Get PDF
    The use of fingerprint in biometric identification has been the most widely used authentication system. The uniqueness of the fingerprint for every human provides us with all we need for faultless identification. However, during the fingerprint scanning process, the image generated by the scanner may be slightly different during each scan. This paper puts the implementation of Artificial Neural Networks to provide an efficient matching algorithm for fingerprint authentication. Using the Back-Propagation technique, the algorithm works to match twelve fingerprint parameters and relate them to a unique number provided for each authorized user. Upon matching, the algorithm returns the best match for the given fingerprint parameters
    • …
    corecore