20,813 research outputs found

    Nanophotonic enhancement of the F\"orster resonance energy transfer rate on single DNA molecules

    Full text link
    Nanophotonics achieves accurate control over the luminescence properties of a single quantum emitter by tailoring the light-matter interaction at the nanoscale and modifying the local density of optical states (LDOS). This paradigm could also benefit to F\"orster resonance energy transfer (FRET) by enhancing the near-field electromagnetic interaction between two fluorescent emitters. Despite the wide applications of FRET in nanosciences, using nanophotonics to enhance FRET remains a debated and complex challenge. Here, we demonstrate enhanced energy transfer within single donor-acceptor fluorophore pairs confined in gold nanoapertures. Experiments monitoring both the donor and the acceptor emission photodynamics at the single molecule level clearly establish a linear dependence of the FRET rate on the LDOS in nanoapertures. These findings are applied to enhance the FRET rate in nanoapertures up to six times, demonstrating that nanophotonics can be used to intensify the near-field energy transfer and improve the biophotonic applications of FRET

    Halide-Perovskite Resonant Nanophotonics

    Full text link
    Halide perovskites have emerged recently as promising materials for many applications in photovoltaics and optoelectronics. Recent studies of their optical properties suggest many novel opportunities for a design of advanced nanophotonic devices due to low-cost fabrication, high values of the refractive index, existence of excitons at room temperatures, broadband bandgap tunability, high optical gain and nonlinear response, as well as simplicity of their integration with other types of structures. This paper provides an overview of the recent progress in the study of optical effects originating from nanostructured perovskites, including their potential applications.Comment: revie

    Photon-based and classical descriptions in nanophotonics: a review

    Get PDF
    The centrality of the photon concept in modern physics is strongly evident in wide spheres of photonics and nanophotonics. Despite the resilience and persistence of earlier classical representations, there are numerous optical features and phenomena that only truly photon-based descriptions of theory can properly address. It is crucial to cast theory in terms of observables, and in this respect the quantum theory of light engages most directly and pragmatically with experiment. No other theory adequately reconciles the discreteness in energy of optical quanta, with their characteristic quantum mechanical delocalization in space. Examples of the distinctiveness of a photonic representation are to be found in nonclassical optical correlations; intensity fluctuations and phase; polarization, spin, and information content; measures of optical chirality; near-field interactions; and plasmonics. Increasingly, links between these fundamental properties and features are proving significant in the context of nanoscale interactions. Yet, even as new technologies are being built on the framework of modern photonics, a number of difficult questions surrounding the nature of the photon still remain. Both in its flourishing applications and in matters of fundamental entity, the photon is still a subject very much at the heart of current research
    • …
    corecore