546 research outputs found

    Special Issue of the Manufacturing Engineering Society 2021 (SIMES-2021)

    Get PDF
    After the complete success of the first, second, and third editions of the Special Issues of the Manufacturing Engineering Society (SIMES), with a total of 118 contributions (94 in Materials and 24 in Applied Sciences) on emerging methods and technologies, the Special Issue of the Manufacturing Engineering Society 2021 (SIMES-2021) was launched again as a joint Special Issue of the same journals—Materials and Applied Sciences.Partial funding for open access charge: Universidad de Málag

    New Manufacturing Environments with Micro- and Nanorobotics

    Get PDF
    UIDB/04647/2020 UIDP/04647/2020The convergence of nano-, bio-, information, and cognitive sciences and technologies (NBIC) is advancing continuously in many societal spheres. This also applies to the manufacturing sector, where technological transformations in robotics push the boundaries of human–machine interaction (HMI). Here, current technological advances in micro- and nanomanufacturing are accompanied by new socio-economic concepts for different sectors of the process industry. Although these developments are still ongoing, the blurring of the boundaries of HMI in processes at the micro- and nano- level can already be observed. According to the authors, these new socio-technical HMIs may lead to the development of new work environments, which can also have an impact on work organization. While there is still little empirical evidence, the following contribution focuses on the question whether the “manufacturing (or working) life” using enhancement practices pushes the boundaries of HMI and how these effects enable new modes of working in manufacturing. Issues of standardization, acceleration of processes, and order-oriented production become essential for technological innovation in this field. However, these trends tend to lead to a “manufacturing life” in work environments rather than to new modes of work in industry.publishersversionepub_ahead_of_prin

    The OASIS-Sustainable Nanomanufacturing Framework (OASIS-SNF): a new simplified approach to implement sustainable production in nanomanufacturing pilot lines and evaluate its sustainable manufacturing performance

    Get PDF
    The pilot production ecosystem deployed by the EU-project OASIS consists of 12 pilot lines (PLs) for the manufacture of nanomaterials, nano-intermediates and nano-enabled products, intended for the final production of lightweight multifunctional products, based on aluminium and polymer composites, for construction, energy, automotive and aeronautics. OASIS intends to deploy this nanomanufacturing ecosystem under a common umbrella of sustainable production, to ensure a future competitive, quality, safe and environmentally friendly production of nanoproducts, in compliance with the applicable regulation. This paper introduces the new OASIS-Sustainable Nanomanufaturing Framework (OASIS-SNF) and some first results obtained during the initial stages of deployment in the PLs (diagnostic and planning stages). The adoption of the OASIS-SNF among the OASIS PLs is intended to enable them to sustainable manufacturing their nanoproducts, properly manage their sustainability priorities, and continually improve their sustainability performance (management and results).The project OASIS received funding from the European Union’s Horizon 2020 research and innovation programme, under grant agreement Nº 814581. This paper reflects only the authors’ views, and the Commission is not responsible for any use that may be made of the information contained therein

    Implementation of in Process Surface Metrology for R2R Flexible PV Barrier Films

    Get PDF
    Thin functional barrier layers of aluminum oxide (Al2O3) that are used particularly in photovoltaic (PV) modules to prevent the possibility of water vapor ingress should be applied over the entire PV surface without any defects. However, for barrier layer thicknesses within the sub-micrometer range (up to 50 nm) produced through the atomic layer deposition (ALD) method, it is common for defects to occur during the production process. To avoid defective barriers from being incorporated in the final PV unit, defects need to be detected during the barrier production process. In this paper, the implementation of in process inspection system capable of detecting surface defects such as pinholes, scratches, or particles down to a lateral size of 3 μm and a vertical resolution of 10 nm over a 500 mm barrier width is presented. The system has a built-in environmental vibration compensation capability, and can monitor ALD-coated films manufactured using roll-to-roll (R2R) techniques. Ultimately, with the aid of this in process measurement system, it should be possible to monitor the coating surface process of large-area substrates, and if necessary, carry out remedial work on the process parameters

    The Boston University Photonics Center annual report 2014-2015

    Full text link
    This repository item contains an annual report that summarizes activities of the Boston University Photonics Center in the 2014-2015 academic year. The report provides quantitative and descriptive information regarding photonics programs in education, interdisciplinary research, business innovation, and technology development. The Boston University Photonics Center (BUPC) is an interdisciplinary hub for education, research, scholarship, innovation, and technology development associated with practical uses of light.This has been a good year for the Photonics Center. In the following pages, you will see that the center’s faculty received prodigious honors and awards, generated more than 100 notable scholarly publications in the leading journals in our field, and attracted $18.6M in new research grants/contracts. Faculty and staff also expanded their efforts in education and training, and were awarded two new National Science Foundation– sponsored sites for Research Experiences for Undergraduates and for Teachers. As a community, we hosted a compelling series of distinguished invited speakers, and emphasized the theme of Advanced Materials by Design for the 21st Century at our annual symposium. We continued to support the National Photonics Initiative, and are a part of a New York–based consortium that won the competition for a new photonics- themed node in the National Network of Manufacturing Institutes. Highlights of our research achievements for the year include an ambitious new DoD-sponsored grant for Multi-Scale Multi-Disciplinary Modeling of Electronic Materials led by Professor Enrico Bellotti, continued support of our NIH-sponsored Center for Innovation in Point of Care Technologies for the Future of Cancer Care led by Professor Catherine Klapperich, a new award for Personalized Chemotherapy Through Rapid Monitoring with Wearable Optics led by Assistant Professor Darren Roblyer, and a new award from DARPA to conduct research on Calligraphy to Build Tunable Optical Metamaterials led by Professor Dave Bishop. We were also honored to receive an award from the Massachusetts Life Sciences Center to develop a biophotonics laboratory in our Business Innovation Center

    Comparisons & analyses of U.S. & global economic data & trends

    Get PDF
    Issued as final reportSRI Internationa

    The Boston University Photonics Center annual report 2015-2016

    Full text link
    This repository item contains an annual report that summarizes activities of the Boston University Photonics Center in the 2015-2016 academic year. The report provides quantitative and descriptive information regarding photonics programs in education, interdisciplinary research, business innovation, and technology development. The Boston University Photonics Center (BUPC) is an interdisciplinary hub for education, research, scholarship, innovation, and technology development associated with practical uses of light.This has been a good year for the Photonics Center. In the following pages, you will see that this year the Center’s faculty received prodigious honors and awards, generated more than 100 notable scholarly publications in the leading journals in our field, and attracted $18.9M in new research grants/contracts. Faculty and staff also expanded their efforts in education and training, and cooperated in supporting National Science Foundation sponsored Sites for Research Experiences for Undergraduates and for Research Experiences for Teachers. As a community, we emphasized the theme of “Frontiers in Plasmonics as Enabling Science in Photonics and Beyond” at our annual symposium, hosted by Bjoern Reinhard. We continued to support the National Photonics Initiative, and contributed as a cooperating site in the American Institute for Manufacturing Integrated Photonics (AIM Photonics) which began this year as a new photonics-themed node in the National Network of Manufacturing Institutes. Highlights of our research achievements for the year include an ambitious new DoD-sponsored grant for Development of Less Toxic Treatment Strategies for Metastatic and Drug Resistant Breast Cancer Using Noninvasive Optical Monitoring led by Professor Darren Roblyer, continued support of our NIH-sponsored, Center for Innovation in Point of Care Technologies for the Future of Cancer Care led by Professor Cathy Klapperich, and an exciting confluence of new grant awards in the area of Neurophotonics led by Professors Christopher Gabel, Timothy Gardner, Xue Han, Jerome Mertz, Siddharth Ramachandran, Jason Ritt, and John White. Neurophotonics is fast becoming a leading area of strength of the Photonics Center. The Industry/University Collaborative Research Center, which has become the centerpiece of our translational biophotonics program, continues to focus onadvancing the health care and medical device industries, and has entered its sixth year of operation with a strong record of achievement and with the support of an enthusiastic industrial membership base
    corecore