648 research outputs found

    Neuroinspired unsupervised learning and pruning with subquantum CBRAM arrays.

    Get PDF
    Resistive RAM crossbar arrays offer an attractive solution to minimize off-chip data transfer and parallelize on-chip computations for neural networks. Here, we report a hardware/software co-design approach based on low energy subquantum conductive bridging RAM (CBRAM®) devices and a network pruning technique to reduce network level energy consumption. First, we demonstrate low energy subquantum CBRAM devices exhibiting gradual switching characteristics important for implementing weight updates in hardware during unsupervised learning. Then we develop a network pruning algorithm that can be employed during training, different from previous network pruning approaches applied for inference only. Using a 512 kbit subquantum CBRAM array, we experimentally demonstrate high recognition accuracy on the MNIST dataset for digital implementation of unsupervised learning. Our hardware/software co-design approach can pave the way towards resistive memory based neuro-inspired systems that can autonomously learn and process information in power-limited settings

    Classification using Dopant Network Processing Units

    Get PDF

    Nanoelectronic Design Based on a CNT Nano-Architecture

    Get PDF

    Forward Table-Based Presynaptic Event-Triggered Spike-Timing-Dependent Plasticity

    Full text link
    Spike-timing-dependent plasticity (STDP) incurs both causal and acausal synaptic weight updates, for negative and positive time differences between pre-synaptic and post-synaptic spike events. For realizing such updates in neuromorphic hardware, current implementations either require forward and reverse lookup access to the synaptic connectivity table, or rely on memory-intensive architectures such as crossbar arrays. We present a novel method for realizing both causal and acausal weight updates using only forward lookup access of the synaptic connectivity table, permitting memory-efficient implementation. A simplified implementation in FPGA, using a single timer variable for each neuron, closely approximates exact STDP cumulative weight updates for neuron refractory periods greater than 10 ms, and reduces to exact STDP for refractory periods greater than the STDP time window. Compared to conventional crossbar implementation, the forward table-based implementation leads to substantial memory savings for sparsely connected networks supporting scalable neuromorphic systems with fully reconfigurable synaptic connectivity and plasticity.Comment: Submitted to BioCAS 201
    • …
    corecore