12 research outputs found

    An Energy-Efficient Design Paradigm for a Memory Cell Based on Novel Nanoelectromechanical Switches

    Get PDF
    In this chapter, we explain NEMsCAM cell, a new content-addressable memory (CAM) cell, which is designed based on both CMOS technologies and nanoelectromechanical (NEM) switches. The memory part of NEMsCAM is designed with two complementary nonvolatile NEM switches and located on top of the CMOS-based comparison component. As a use case, we evaluate first-level instruction and data translation lookaside buffers (TLBs) with 16 nm CMOS technology at 2 GHz. The simulation results demonstrate that the NEMsCAM TLB reduces the energy consumption per search operation (by 27%), standby mode (by 53.9%), write operation (by 41.9%), and the area (by 40.5%) compared to a CMOS-only TLB with minimal performance overhead

    NEMsCAM: A novel CAM cell based on nano-electro-mechanical switch and CMOS for energy efficient TLBs

    Get PDF
    In this paper we propose a novel Content Addressable Memory (CAM) cell, NEMsCAM, based on both Nano-electro-mechanical (NEM) switches and CMOS technologies. The memory component of the proposed CAM cell is designed with two complementary non-volatile NEM switches and located on top of the CMOS-based comparison component. As a use case for the NEMsCAM cell, we design first-level data and instruction Translation Lookaside Buffers (TLBs) with 16nm CMOS technology at 2GHz. The simulations show that the NEMsCAM TLB reduces the energy consumption per search operation (by 27%), write operation (by 41.9%) and standby mode (by 53.9%), and the area (by 40.5%) compared to a CMOS-only TLB with minimal performance overhead.We thank all anonymous reviewers for their insightful comments. This work is supported in part by the European Union (FEDER funds) under contract TIN2012-34557, and the European Union’s Seventh Framework Programme (FP7/2007-2013) under the ParaDIME project (GA no. 318693)Postprint (author's final draft

    DEVELOPMENT OF NANO/MICROELECTROMECHANICAL SYSTEM (N/MEMS) SWITCHES

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Design methodologies, models and tools for very-large-scale integration of NEM relay-based circuits

    Get PDF

    Analysis of a MEMS-based ring oscillator

    No full text
    International audienceThis work introduces a MEMS oscillator composed exclusively of mechanical switches as logic components. The electromechanical model of the system is developed and the conditions for a periodic response are established

    Non-invasive power gating techniques for bursty computation workloads using micro-electro-mechanical relays

    Get PDF
    PhD ThesisElectrostatically-actuated Micro-Electro-Mechanical/Nano-Electro- Mechanical (MEM/NEM) relays are promising devices overcoming the energy-efficiency limitations of CMOS transistors. Many exploratory research projects are currently under way investigating the mechanical, electrical and logical characteristics of MEM/NEM relays. One particular issue that this work addresses is the need for a scalable and accurate physical model of the MEM/NEM switches that can be plugged into the standard EDA software. The existing models are accurate and detailed but they suffer from the convergence problem. This problem requires finding ad-hoc workarounds and significantly impacts the designer’s productivity. In this thesis we propose a new simplified Verilog-AMS model. To test scalability of the proposed model we cross-checked it against our analysis of a range of benchmark circuits. Results show that, compared to standard models, the proposed model is sufficiently accurate with an average of 6% error and can handle larger designs without divergence. This thesis also investigates the modelling, designing and optimization of various MEM/NEM switches using 3D Finite Element Analysis (FEA) performed by the COMSOL multiphysics simulation tool. An extensive parametric sweep simulation is performed to study the energy-latency trade-offs of MEM/NEM relays. To accurately simulate MEMS/NEMS-based digital circuits, a Verilog-AMS model is proposed based on the evaluated parameters obtained from the multiphysics simulation tool. This allows an accurate calibration of the MEM/NEM relays with a significant reduction in simulation speed compared to that of 3D FEA exercised on COMSOL tool. The effectiveness of two power gating approaches in asynchronous micropipelines is also investigated using MEM/NEM switches and sleep transistors in reducing idle power dissipation with a particular target throughput. Sleep transistors are traditionally used to power gate idle circuits, however, these transistors have fundamental limitations in their effectiveness. Alternatively, MEM/NEM relays with zero leakage current can achieve greater energy savings under a certain data rate and design architecture. An asynchronous FIR filter 4 phase bundled data handshake protocol is presented. Implementation is accomplished in 90nm technology node and simulation exercised at various data rates and design complexities. It was demonstrated that our proposed approach offers 69% energy improvements at a data rate 1KHz compared to 39% of the previous work. The current trends for greater heterogeneity in future Systems-on- Chip (SoC) do not only concern their functionality but also their timing and power aspects. The increasing diversity of timing and power supply conditions, and associated concurrently operating modes, within an SoC calls for more efficient power delivery networks (PDN) for battery operated devices. This is especially important for systems with mixed duty cycling, where some parts are required to work regularly with low-throughput while other parts are activated spontaneously, i.e. in bursts. To improve their reaction time vs energy efficiency, this work proposes to incorporate a power-switching network based on MEM relays to switch the SoC power-performance state (PPS) into an active mode while eliminating the leakage current when it is idle. Results show that even with today0s large and high pull-in voltages, a MEM-relay-based power switching network (PSN) can achieve a 1000x savings in energy compared to its CMOS counterpart for low duty cycle. A simple case of optimising an on-chip charge pump required to switch-on the relay has been investigated and its energy-latency overhead has been evaluated. Heterogeneous many-core systems are increasingly being employed in modern embedded platforms for high throughput at low energy cost considerations. These applications typically exhibit bursty workloads that provide opportunities to minimize system energy. CMOS-based power gating circuitry, typically consisting of sleep transistors, is used as an effective technique for idle energy reduction in such applications. However, these transistors contribute high leakage current when driving large capacitive loads, making effective energy minimization challenging. This thesis proposes a novel MEMS-based idle energy control approach. Core to this approach is an integrated sleep mode management based on the performance-energy states and bursty workloads indicated by the performance counters. A number of PARSEC benchmark applications are used as case studies of bursty workloads, including CPU- and memory- intensive ones. These applications are exercised on an Exynos 5422 heterogeneous many-core platform, engineered with a performance counter facilities, showing 55.5% energy savings compared with an on-demand governor. Furthermore, an extensive trade-off analysis demonstrates the comparative advantages of the MEMS-based controller, including zero-leakage current and non-invasive implementations suitable for commercial off-the-shelf systems.Higher committee of education development in Iraq (HCED

    DEVELOPMENT OF NEMS RELAYS IN LOGIC COMPUTATION AND RUGGED ELECTRONICS

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Carbon nanotube switches for memory, RF communications and sensing applications, and methods of making the same

    Get PDF
    Switches having an in situ grown carbon nanotube as an element thereof, and methods of fabricating such switches. A carbon nanotube is grown in situ in mechanical connection with a conductive substrate, such as a heavily doped silicon wafer or an SOI wafer. The carbon nanotube is electrically connected at one location to a terminal. At another location of the carbon nanotube there is situated a pull electrode that can be used to elecrostatically displace the carbon nanotube so that it selectively makes contact with either the pull electrode or with a contact electrode. Connection to the pull electrode is sufficient to operate the device as a simple switch, while connection to a contact electrode is useful to operate the device in a manner analogous to a relay. In various embodiments, the devices disclosed are useful as at least switches for various signals, multi-state memory, computational devices, and multiplexers
    corecore