53 research outputs found

    Electroactive nanoarrays for the biospecific-ligand mediated study of single cell adhesion and polarization

    Get PDF
    Cell adhesion, polarization, and migration are vital to numerous biological phenomena. Therefore, a greater understanding of the mechanisms of these processes will have broad impacts in fields ranging from developmental biology to medicine. This work has focused on developing a nanoscale model system that will allow one to study the effect of the spatial presentation of immobilized ligands on the nanoarchitecture of adherent cells. In Chapter 2, the development of electroactive nanoarrays of hydroquinone-terminated alkanethiol, produced by dip-pen nanolithography (DPN) is described. These nanoarrays, in conjunction with an oxime-chemistry based chemoselective immobilization strategy and high-resolution fluorescence microscopy, were used to study biospecific-ligand mediated single cell adhesion. The difference in ligand affinity of linear and cyclic Arg-Gly-Asp (RGD) was shown to have a dramatic affect on the intracellular nanoarchitecture of adherent fibroblasts. The production of asymmetric nanoarrays used to study single cell polarization is described in Chapter 3. Asymmetric nanoarrays presenting linear RGD were found to induce net directional cell polarization in adherent fibroblasts, while linear RGD-presenting symmetric nanoarrays did not induce net polarity. This demonstrates a direct correlation between the spatial distribution of cell adhesive ligand and the establishment and maintenance of directional cell polarization. In addition, there was no net directional cell polarity found on asymmetric nanoarrays presenting a higher affinity ligand cyclic RGD, indicating that ligand affinity also has a profound effect on cell polarization. The relationship between ligand affinity and spatial distribution of immobilized ligand was further explored through double asymmetric nanoarrays presenting cyclic RGD, which were shown to impose directional cell polarization. In order to extend this methodology to examine other aspects of cell adhesion and polarization on electroactive nanoarrays other methods of visualization were considered. There have been conflicting reports regarding the use of total internal reflection fluorescence microscopy (TIRFM) to visualize cells near thin metal layers. In Chapter 4, it was determined that TIRFM is an effective method to examine intercellular structures of cells adhered to patterned SAMs on gold surfaces. This was demonstrated through the use of microcontact printing and DPN patterning methods. Future applications of this research are presented in Chapter 5

    Conversion of nanoscale topographical information of cluster-assembled zirconia surfaces into mechanotransductive events promotes neuronal differentiation

    Get PDF
    Additional file 4: Table S1. Proteomic data for upregulated proteins. Proteins upregulated (compared to flat-Zr) or present only in cells grown on ns-Zr15. Adhesome proteins and proteins with roles in mechanobiological processes are marked in dark and light grey, respectively

    Scale invariant disordered nanotopography promotes hippocampal neuron development and maturation with involvement of mechanotransductive pathways

    Get PDF
    The identification of biomaterials which promote neuronal maturation up to the generation of integrated neural circuits is fundamental for modern neuroscience. The development of neural circuits arises from complex maturative processes regulated by poorly understood signaling events, often guided by the extracellular matrix (ECM). Here we report that nanostructured zirconia surfaces, produced by supersonic cluster beam deposition of zirconia nanoparticles and characterized by ECM-like nanotopographical features, can direct the maturation of neural networks. Hippocampal neurons cultured on such cluster-assembled surfaces displayed enhanced differentiation paralleled by functional changes. The latter was demonstrated by single-cell electrophysiology showing earlier action potential generation and increased spontaneous postsynaptic currents compared to the neurons grown on the featureless unnaturally flat standard control surfaces. Label-free shotgun proteomics broadly confirmed the functional changes and suggests furthermore a vast impact of the neuron/nanotopography interaction on mechanotransductive machinery components, known to control physiological in vivo ECM-regulated axon guidance and synaptic plasticity. Our results indicate a potential of cluster-assembled zirconia nanotopography exploitable for the creation of efficient neural tissue interfaces and cell culture devices promoting neurogenic events, but also for unveiling mechanotransductive aspects of neuronal development and maturation

    Bioactive porous peg-peptide composite hydrogels with tunable mechanical properties

    Get PDF
    Ankara : The Materials Science and Nanotechnology Program of the Graduate School of Engineering and Science of Bilkent University, 2014.Thesis (Master's) -- Bilkent University, 2014.Includes bibliographical references leaves 73-85.Mimicking the instructive cues of native extracellular matrix (ECM) is fundamental to understand and control the processes regulating cell function and cell fate. Extensive research on the structure and biological complexity of ECM has shown that three types of critical information from the ECM have influence on cellular behaviour: (1) biophysical properties (elasticity, stiffness), (2) biochemical properties (bioactive peptide epitopes of ECM molecules), and (3) nanoarchitecture (nanofibrillar structure, porosity) of ECM. Recent efforts have therefore focused on the construction of ECM mimetic materials to modulate tissue specific cell functions. Advances in biomaterial platforms include artificial ECM mimics of peptide conjugated synthetic polymer hydrogels presenting bioactive ligands produced with covalent chemistry. These materials have already found application in tissue engineering, however, these biomaterial platforms represent oversimplified mimics of cellular microenvironment and lack the complexity and multifunctional aspects of native ECM. In this work, we developed a novel polyethylene glycol (PEG)-peptide nanofiber composite hydrogel system with independently tunable biochemical, mechanical and physical cues that does not require any chemical modification of polymer backbone to create synthetic ECM analogues. This approach allows noninteracting modification of multifactorial niche properties (i.e. bioactive ligands, stiffness, porosity), since no covalent conjugation method was used to modify PEG monomers for the incorporation of bioactivity and porosity. Combining the self-assembled peptide nanofibers with crosslinked polymer network simply by facile mixing followed by photo-polymerization resulted in the formation of porous hydrogel systems. Resulting porous network can be functionalized with desired bioactive signalling epitopes by simply altering the amino acid sequence of peptide amphiphile molecules. In addition, the mechanical properties of the composite system can be precisely controlled by changing the PEG concentration. Ultimately, multifunctional PEG-peptide composite scaffolds reported in this work, can fill a critical gap in the available biomaterials as versatile synthetic mimics of ECM with independently tunable properties. Such a system could provide a useful tool allowing the investigation of how complex niche cues interplay to influence cellular behaviour and tissue formation both in 2D and 3D platforms.Göktaş, MelisM.S

    Polycaprolactone nanowire surfaces as interfaces for cardiovascular applications

    Get PDF
    2014 Summer.Cardiovascular disease is the leading killer of people worldwide. Current treatments include organ transplants, surgery, metabolic products and mechanical/synthetic implants. Of these, mechanical and synthetic implants are the most promising. However, rejection of cardiovascular implants continues to be a problem, eliciting a need for understanding the mechanisms behind tissue-material interaction. Recently, bioartificial implants, consisting of synthetic tissue engineering scaffolds and cells, have shown great promise for cardiovascular repair. An ideal cardiovascular implant surface must be capable of adhering cells and providing appropriate physiological responses while the native tissue integrates with the scaffold. However, the success of these implants is not only dependent on tissue integration but also hemocompatibility (interaction of material with blood components), a property that depends on the surface of the material. A thorough understanding of the interaction of cardiovascular cells and whole blood and its components with the material surface is essential in order to have a successful application which promotes healing as well as native tissue integration and regeneration. The purpose of this research is to study polymeric nanowire surfaces as potential interfaces for cardiovascular applications by investigating cellular response as well as hemocompatibility

    Development of Dynamic Substrates for Studies of Cell Adhesion and Migration

    Get PDF
    A class of model substrates that modulate the dynamic environment for a variety of cell adhesion and migration experiments was developed. The substrate is based on an electrochemically switchable self-assembled monolayer that presents redox active hydroquinone groups. In the presence of the cells, the surface can be activated to undergo chemoselective reaction between quinone monolayers and oxyamine-tethered ligands resulting in ligand immobilization on the surface. The dynamic substrates were used to probe in real-time how the interplay between the population of cells, the initial pattern geometry, ligand density, ligand affinity and integrin composition affects cell migration and growth. The study also showed cell migration was affected by initial events which dictated subsequent motility that superseded the composition of the underlying surface chemistry. Whole genome microarray analysis indicates that several classes of genes ranging from signal transduction to cytoskeletal reorganization are differentially regulated depending on the nature of the surface conditions. A combined photochemical and electrochemical approach generated model substrates presenting molecularly defined gradients of ligands for studying cell migration and polarization. Deprotection of a photo-labile group by ultraviolet light revealed redox active molecules in patterns and gradients; consequently so were the coupled ligand molecules. We show quantitatively the subtle interplay between ligand slope, density and affinity that causes a cell to modulate its adhesion and migration position and behavior during directed movement. The methodology for immobilizing ligand and patterning gradient was also used in producing co-culture model substrate and nanoarrays for adhesion study

    Material-driven fibronectin fibrillogenesis to engineer cell function

    Full text link
    This thesis ventures with the extracellular matrix protein (ECM) fibronectin (FN) as an interface protein in the interaction between cells and materials to design microenvironment for future use in tissue engineering. It is studied the FN adsorption and conformations, cell behaviour to different FN conformation, cell adhesion, reorganisation and remodelling of FN at the material interface, the role of growth factors (GF) and their interactions with components of the extracellular matrix (ECM), the immunology cell response, and the stem cell fate influenced by the extrinsic signals coming from the engineered microenvironments using ECM's proteins. To investigate the FN response, in terms of adsorbed amount and conformation to different chemical properties of the material, model surfaces were used. Self assembled monolayers (SAM) with different percentages of two different chemical groups were used: CH3 and OH. FN adsorption, initial cell adhesion and signalling (focal adhesions, integrin expression and phosphorylation of FAK) is related with the reorganisation and secretion of FN and matrix degradation. It is shown that matrix degradation at the cell material interface depends on surface chemistry in metalloproteinase-dependent way. A direct relationship between FN activity at the cell-material interface and metalloproteinase 9 (MMP9) expression was found, being the product of a sequence of events that include integrin expression, focal adhesion formation, matrix reorganisation and focal adhesion kinase (FAK) phosphorylation. Two different materials with subtle variations in their chemical composition were employed as a drastically different FN conformation: from a globular conformation on PMA (poly (methyl acrylate)) to the formation of a well-interconnected FN network (similar to the FN physiological fibrillar network) triggered by PEA (poly (ethyl acrylate)). The formation of focal adhesions (vinculin), FAK expression and phosphorylation, specific integrin binding, protein and gene expression for ¿5 and ¿v was studied, seeking to correlate cell adhesion with matrix degradation. It is demonstrated that the material-driven FN fibrillogenesis on PEA triggers proteolytic activity: MMP activity is higher as a compensatory mechanism to the inability of cells to reorganise this FN network. Looking into the role of protein-material interactions and stem cell fate, and with the knowledge on PEA, we engineer different synergistic microenvironments to direct cell and stem cell fate. FN has a growth factor (GF) binding domain on its molecule (FNIII12-14) and has been demonstrated to produce a synergistic response when occurs at the same time the recognition of the cell binding domain (FNIII9-10). It is demonstrated that this domain is available on the FN coated PEA, and exploiting these interactions between PEA, FN and GF, it is developed a microenvironment to control cell behaviour and tissue repair. It is studied the BMP2 binding and presentation, the effect of BMP2 presentation on MSC proliferation and differentiation. These systems allow not only enhanced activity of GF compared to soluble administration, but also reduce GF doses, improving safety and cost effectiveness. Finally, the immunological reaction of the microenvironment developed is studied using dendritic cells, beside the conformational structure of ECM protein importance in DC integrin-based activation it is studied, helping to establish the field of adhesion-based modulation of DC as a general mechanism that has previously not been defined. The microenvironment didn't induce any maturation in DC, while different FN conformation shows differences in DC morphology and citokine level production (IL-10 and IL-12).En esta tesis se estudia la interacción de una proteina de la matriz extracelular, fibronectina (FN) como interfase en la interacción entre células y materiales, para diseñar microambientes con el propósito de ser usados en el futuro en ingeniería tisular. Se estudia la adsorción y conformación de FN y la relación con el diferente comportamiento celular: la adhesión celular, la reorganización y remodelado de la FN en la interfase célula-material, el papel que juegan los factores de crecimiento y sus interacciones con los componentes de la matriz extracelular, la respuesta immunológica y el destino celular de células madre influenciadas por las señales extrínsecas provenientes de microambientes elaborados a partir de proteínas de la matriz extracelular. Con el objetivo de investigar la respuesta a la FN en términos de conformación y cantidad absorbida a diferentes propiedades químicas del material, se usaron materiales modelo: monocapas autoensambladas (self-assembled monolayers, SAM). Las químicas estudiadas fueron CH3 and OH. La adsorption de FN, adhesion y señalización (adhesiones focales, expresión de interinas y fosforilación de quinasas de adhesiones focales (FAK)) se estudiaron en relación a la reorganización y secreción de FN y degradación de la matriz extracelular. Se demuestra que la degradación de la matriz extracelular en la interfase célula-material depende de la química de la superficie, a través de las metaloproteinasas. Se ha descubierto una relación directa entre la actividad de la FN que se encuentra en el material y la expresión de metaloproteinasa 9 (MMP9), a través de la expresión de integrinas, formación de adhesiones focales, reorganización de la matriz extracelular y fosforilación de FAK En el siguiente capítulo se emplean materiales poliméricos con una sutil diferencia en la composición química, provocando una diferencia drástica en la conformación de la FN: se pasa de una conformación globular en PMA (polimetil acrilato) a una conformación en forma de red interconectada en PEA (polietil acrilato). Con el propósito de relacionar la adhesión celular con la degradación de la matriz extracelular, se estudia la formación de adhesiones focales (vinculina), la expresión y fosforilación de FAK, la unión específica de integrinas y la expresión de las integrinas ¿5 and ¿v. Se demuestra que la formación de una red de FN sobre PEA induce la actividad proteolítica: la actividad de las MMPs es mayor, actuando como mecanismo compensatorio a la incapacidad de reorganización de la red de FN. Haciendo uso de la conformación de la FN sobre PEA, se estudiaron las interacciones entre la proteína-material y el destino celular de células madres. La FN posee un dominio de unión de factores de crecimiento (FNIII12-14) y se ha demostrado que se produce una respuesta sinérgica cuando el reconocimiento ocurre junto con el dominio de unión celular (FNIII9-10). En esta tesis se demuestra que el dominio de unión de factores de crecimiento está disponible en la conformación que adquiere sobre PEA y se diseñan microambientes para controlar el comportamiento celular y regeneración de tejido. Se estudia la unión y presentación de BMP2 y su efecto en la diferenciación de células madre mesenquimales. Los microambientes desarrollados, ademas de mejorar la actividad de los factores de crecimiento comparado con la administración soluble, también reduce la cantidad de factores de crecimiento que se tendría que administrar, mejorando la seguridad y efectividad. Finalmente se estudió la reacción inmunológica a los microambientes desarrollados usando células dendríticas, estudiando además la influencia de la estructura de la conformación de las proteínas en la activación de las células dendríticas a través de las integrinas. Los microambientes no indujeron ninguna maduración de células dendríticas, mientras que la conformación de la FN muestra controlEn aquesta tesi s'estudia la interacció entre una proteïna de la matriu extracel.lular, fibronectina (FN) com interfase en la interaccio entre cèl·lules i materials, per a dissenyar microambients amb el propòsit d'utilitzar-se al futur en enginyeria tissular. S'estudia l'adsorció i conformació de la FN i la relació amb el diferent comportament cel·lular: l'adhesió cel·lular, la reorganització i remodelat de la FN a la interfase cèl·lula-material, el paper que juguen els factors de creixement i les seus interaccions amb els components de la matriu extracel·lular, la resposta immunològica i el destí cel·lular de cèl·lules mare influenciades pels senyals extrínseques provinents de microambients elaborats a partir de proteïnes de la matriu extracel·lular. Amb l'objectiu d'investigar la respostar a la FN en termes de conformació i quantitat absorbida a diferents propietats químiques del material, s'utilitzaren materials model: monocapes autoacoblades (self-assembled monolayers, SAM). Les químiques estudiades van ser CH3 and OH. L'absorció de FN, adhesió i senyalització (adhesions focals, expressió d'integrines i fosforilació de quinases d'adhesions focals (FAK)) es van estudiar en relació a al reorganització i secreció de la FN i degradació de la matriu extracel·lular. Es demostra que la degradació de la matriu extracelular en la interfase cèl·lula-material depèn de la química de la superficie, a través de les metal·loproteïnases. S'ha descobert una relació directa entra l'activitat de la FN que es troba en el material i l'expressió de metaloproteinasa 9, a través de l'expressió d'integrines, formació d'adhesions focals, reorganització de la matriu extracel·lular i fosforilació de FAK. Al següent capítol es fan servir materials polimèrics amb una subtil diferència en la composició química, provocant una diferència dràstica en la conformació de la FN: es passa d'una conformació globular en PMA (polimetil acrilat) a una conformació en forma de xarxa interconnectada en PEA (polietil acrilat). Amb el propòsit de relacionar l'adhesió cel·lular amb la degradació de la matriu extracel·lular, s'estudia la formació d'adhesions focals (vinculina), l'expressió i fosforilació de FAK, la unió específica d'integrines i l'expressió de les integrines ¿5 and ¿v. Es demostra que la formació d'una xarxa de FN sobre PEA indueix l'activitat proteolítica: l'activitat de les MMPs és més gran, actuant com a mecanisme compensatori a la incapacitat de reorganització de la xarxa de FN. Fent ús de la conformació de la FN sobre PEA, es van estudiar les interaccions entre la proteïna-material i el destí cel·lular de cèl·lules mares. La FN posseeix un domini d'unió de factors de creixement (FNIII12-14) i s'ha demostrat que es produeix una resposta sinèrgica quan el reconeixement ocurreix juntament amb el domini d'unió cel·lular (FNIII9- 10). En aquesta tesi es demostra que el domini d'unió de factors de creixement està disponible a la conformació que adquireix sobre PEA i es dissenyen microambients per controlar el comportament cel·lular i regeneració de teixit. S'estudia la unió i presentació de BMP2 i el seu efecte en la diferenciació de cèl·lules mare mesenquimals. Els microambientes desenvolupats, a més de millorar l'activitat dels factors de creixement comparat amb l'administració soluble, també redueix la quantitat de factors de creixement que s'hauria d'administrar, millorant la seguretat i efectivitat. Finalment es va estudiar la reacció immunològica als microambients desenvolupats usant cèl·lules dendrítiques, estudiant a més la influència de l'estructura de la conformació de les proteïnes en l'activació de les cèl·lules dendrítiques a través de les integrines. Els microambients no van induir cap maduració de cèl·lules dendrítiques, mentre que la conformació de la FN mostra controlar la morfologia de les cèl·lules dendrítiques iLlopis Hernández, V. (2017). Material-driven fibronectin fibrillogenesis to engineer cell function [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/90412TESI

    Mechanobiology of T cell activation

    Get PDF
    Cells can sense and respond to the physical environment through generation and transmission of mechanical forces from the surroundings to the cell interior and from one cell to another. This dissertation focuses on mechanosensing by T cells, key players in the adaptive immune system, which form a strong line of defense against infections by their ability to recognize foreign molecules and develop an appropriate response. T cells form close contact with an opposing antigen presenting cell upon recognition of protein fragments derived from infecting pathogens (antigens). Recent studies have shown that externally applied forces can trigger biochemical signaling in T cells. How forces are internally generated by T cells, involved in signaling and transmitted at the level of the cell interface, remains unclear. In this thesis, we investigate the molecular mechanisms of force generation by T cells and their response to forces and the stiffness of the opposing surface. We have quantitatively characterized the initial phase of T cell contact with a model of antigen-bearing surfaces. We observe that T cells spread on such substrates and that the kinetics of spreading follows a universal function, with the spreading rate dependent on actin polymerization and myosin II activity. Altering cell-substrate adhesions leads to qualitative changes in cell spreading dynamics and wave-like patterns of actin dynamics. We then used soft elastic substrates with stiffness comparable to that of antigen presenting cells, to measure the forces generated by T cells during activation. Perturbation experiments reveal that these forces are largely due to actin assembly and dynamics, with myosin contractility contributing to the development of traction forces but not its maintenance. We find that Jurkat T-cells are mechanosensitive, with both traction forces and signaling dynamics exhibiting sensitivity to the stiffness of the substrate. We further demonstrate that dynamics of the T cell microtubule cytoskeleton also participates in regulating forces at the cell-substrate interface, through the Rho/ROCK pathway which regulates myosin II light chain phosphorylation. Overall, this work highlights physical force as an essential mediator that connects stiffness sensing to intracellular signaling, which then directs gene expression and eventually the immune response in T cells

    The influence of nanotopographical structures on osteoblast adhesion formation and the functional response of mesenchymal stem cell populations

    Get PDF
    It is predicted that the percentage of persons over 50 years of age affected by bone diseases will double by 2020 (Navarro et al., 2008). Clearly this represents a need for permanent, temporary or biodegradable orthopaedic devices that are designed to substitute or guide bone repair. Polymeric medical devices are widely used in orthopaedic surgery and play a key role in fracture fixation and in areas of orthopaedic implant design. Initial uncertainty regarding the adequacy of polymeric materials to withstand functional stresses obliged clinicians to implement these biomaterials in non-load-bearing applications such as fixation of the maxillofacial skeleton. Strategies to guide bone repair, have included topographical modification of these devices in an attempt to regulate cellular adhesion, a process fundamental in the initiation of osteoinduction and osteogenesis. Advances in fabrication techniques have evolved the field of surface modification and, in particular, nanotechnology has allowed the development of experimental nanoscale substrates for the investigation into cell-nanofeature interactions. This thesis is concerned with the study of nanotopographical structures on osteoblast adhesion and mesenchymal stem cell (MSC) function, with an aim to improving the functionality of orthopaedic craniomaxillofacial devices. In this study primary human osteoblast (HOBs) were cultured on nanoscale topographies fabricated by lithographic and phase separation techniques in poly(methyl methacrylate) (pMMA). Adhesion subtypes in HOBs were quantified by immunofluorescent microscopy and cell-substrate interactions investigated via immunocytochemistry with scanning electron microscopy. To investigate the effects of these substrates on cellular function 1.7 K microarray analysis was employed to study the changes in gene profiles of enriched MSC populations cultured on these nanotopographies. Nanotopography differentially affected the formation of adhesions in HOBs and induced significant changes in genetic expression of MSCs on experimental substrates. Nanopit type topographies fabricated by electron beam lithography were shown to inhibit directly the formation of large adhesion complexes in HOBs and induce significant down-regulation of canonical signalling and functional pathways in MSCs. Nanocrater and nanoisland type topographies fabricated by polymer demixing however reduced adhesion formation and induced up-regulation of osteospecific pathways. Nanogrooved topographies fabricated by photolithography influenced HOB adhesion formation and MSC osteospecific function in a manner dependant on the groove width. The findings of this study indicate that nanotopographical modification significantly modulates both osteoblast adhesion and MSC function, implicating topographical modification as a viable strategy to enhance orthopaedic device functionality
    corecore