60 research outputs found

    A vision-based approach for surface roughness assessment at micro and nano scales

    Get PDF

    Fabrication of small aspheric moulds using single point inclined axis grinding

    Get PDF
    Single point inclined axis grinding techniques, including the wheel setting, wheel-workpiece interference, error source determination and compensation approaches, were studied to fabricate small aspheric moulds of high profile accuracy. The interference of a cylindrical grinding wheel with the workpiece was analysed and the criteria for selection of wheel geometry for avoiding the interference was proposed. The grinding process was performed with compensation focused on two major error sources, wheel setting error and wheel wear. The grinding results showed that the compensation approach was efficient and the developed grinding process was capable to generate small aspheric concave surfaces on tungsten carbide material with a profile error of smaller than 200. nm in PV value after two to three compensation cycles

    Precision Surface Processing and Software Modelling Using Shear-Thickening Polishing Slurries

    Get PDF
    Mid-spatial frequency surface error is a known manufacturing defect for aspherical and freeform precision surfaces. These surface ripples decrease imaging contrast and system signal-to-noise ratio. Existing sub-aperture polishing techniques are limited in their abilities to smooth mid-spatial frequency errors. Shear-thickening slurries have been hypothesised to reduce mid-spatial frequency errors on precision optical surfaces by increasing the viscosity at the tool-part interface. Currently, controlling the generation and mitigating existing mid-spatial frequency surface errors for aspherical and freeform surfaces requires extensive setup and the experience of seasoned workers. This thesis reports on the experimental trials of shear-thickening polishing slurries on glass surfaces. By incorporating shear-thickening slurries with the precessed bonnet technology, the aim is to enhance the ability of the precessions technology in mitigating mid-spatial frequency errors. The findings could facilitate a more streamlined manufacturing chain for precision optics for the versatile precessions technology from form correction and texture improvement, to MSF mitigation, without needing to rely on other polishing technologies. Such improvement on the existing bonnet polishing would provide a vital steppingstone towards building a fully autonomous manufacturing cell in a market of continual economic growth. The experiments in this thesis analysed the capabilities of two shear-thickening slurry systems: (1) polyethylene glycol with silica nanoparticle suspension, and (2) water and cornstarch suspension. Both slurry systems demonstrated the ability at mitigating existing surface ripples. Looking at power spectral density graphs, polyethylene glycol slurries reduced the power of the mid-spatial frequencies by ~50% and cornstarch suspension slurries by 60-90%. Experiments of a novel polishing approach are also reported in this thesis to rotate a precessed bonnet at a predetermined working distance above the workpiece surface. The rapidly rotating tool draws in the shear-thickening slurry through the gap to stiffen the fluid for polishing. This technique demonstrated material removal capabilities using cornstarch suspension slurries at a working distance of 1.0-1.5mm. The volumetric removal rate from this process is ~5% of that of contact bonnet polishing, so this aligns more as a finishing process. This polishing technique was given the term rheological bonnet finishing. The rheological properties of cornstarch suspension slurries were tested using a rheometer and modelled through CFD simulation. Using the empirical rheological data, polishing simulations of the rheological bonnet finishing process were modelled in Ansys to analyse the effects of various input parameters such as working distance, tool headspeed, precess angle, and slurry viscosity

    Making the most of the Mogi model: Size matters

    Get PDF
    Magma movements are almost universally associated with volcanic deformation. The Mogi (1958) and McTigue (1987) models link observed surface displacements to behaviour within inaccessible magmatic plumbing systems. Mogi and McTigue models are well-used due to their computational simplicity and ease of application, but both models are limited by their assumptions about the deformation source and its embedding domain. Domain assumptions, including elasticity, homogeneity, and flat topography, have been previously described and corrected for. Whilst recognising the limits of these models, their frequent use in the literature requires an objective assessment of their utility against more sophisticated Finite Element (FE) models, their operational limits (radius-to-depth ratio, ε) and their relative merits in the light of limited field data. Here, we relax the source assumption of a small ε. We simulate volcanic deformation using Mogi, McTigue and FE models - the latter unrestricted by ε - to validate the maximum ε for which the analytical models can be applied, and to compare analytical and FE interpretations of deformation data from Kīlauea Volcano, Hawai'i. We find that analytical and FE models correspond for deformation sources with a range of ε that is wider than previously suggested limits. The differences between simulated surface displacements (forward modelling) and estimated deformation source parameters (inverse modelling) are less than 5% when ε < 0.37 (Mogi) or ε < 0.59 (McTigue). Misfits between analytical and FE models depend on whether radial or vertical displacements are considered simultaneously or independently, and on the values of source radius and depth - not only their ratio, as was assumed previously. There is little or no difference between best-fitting source parameters inferred using Mogi, McTigue and FE models at Kīlauea Volcano, despite the high ε of the system geometry, but sometimes poor correspondences between model results and GNSS observations. Our results demonstrate that Mogi and McTigue models can be applied to volcanoes with a wider range of magma reservoir radii and depths than was hitherto supposed, but previously-established corrections for domain simplifications are necessary to accurately interpret volcanic deformation

    Optical diamond turning of rapidly solidified aluminium alloy grade - 431

    Get PDF
    The high demand for ultraprecision machining systems is increasing day by day. The technology leads to increased productivity and quality manufactured products, with an excellent surface finish. Therefore, these products are in demand in many industrial fields such as space, national defence, the medical industry and other high-tech industries. Single point diamond turning (SPDT) is the core technology of ultraprecision machining, which makes use of single-point crystalline diamond as a cutting tool. This technique is used for machining an extensive selection of complex optical surfaces and other engineering products with a quality surface finish. SPDT can achieve dimensional tolerances in order of 0.01um and surface roughness in order of 1nm. SPDT is not restricted, but mostly applicable, to non-ferrous alloys; due to their reflective properties and microstructure that discourages tool wear. The focus of this study is the development of predictive optimisation models, used to analyse the influence of machining parameters (speed, feed, and depth of cut) on surface roughness. Moreover, the study aims to obtain the optimal machining parameters that would lead to minimum surface roughness during the diamond turning of Rapidly Solidified Aluminium (RSA) 431. In this study, Precitech Nanoform 250 Ultra grind machine was used to perform two experiments on RSA 431. The first machining process, experiment 1, was carried out using pressurized kerosene mist; while experiment 2 was carried out with water as the cutting fluid. In each experiment, machine parameters were varied at intervals and the surface roughness of the workpiece was measured at each variation. The measurements were taken through a contact method using Taylor Hobson PGI Dimension XL surface Profilometer. Acoustic emission (AE) was employed as a precision sensing technique – to optimize the machining quality process and provide indications of the expected surface roughness. The results obtained revealed that better surface roughness can be generated when RSA 431 is diamond-turned using water as a cutting fluid, rather than kerosene mist. Predictive models for surface roughness were developed for each experiment, using response surface methodology (RSM) and artificial neural networks (ANN). Moreover, RSM was used for optimisation. Time domain features acquired from AE signals, together with the three cutting parameters, were used as input parameters in the ANN design. The results of the predictive models show a close relationship between the predicted values and the experimental values for surface roughness. The developed models have been compared in terms of accuracy and cost of computation - using the mean absolute percentage error (MAPE)

    TRIBOLOGICAL CHARACTERISATION AND MODELLING OF PREMIUM TUBULAR CONNECTIONS

    Get PDF
    Premium tubular connections (sometimes referred to as rotary shouldered thread connections), are commonly used to complete a production string in a well in the oil and gas industry. These are attached to threaded pipe ends using a bucking unit and a pre-defined torque value. The torque value is calculated using the coefficient of friction between the two surfaces and a well-known torque equation. The existing technology relies on the coefficient of friction approximated by interpolation, or extrapolation, of empirical data. This may become inaccurate due to the variation of surface finish and/or operation conditions and lead to over or under torque of the connections. A failure such as a leaking connection can result in high financial implications as well as environmental ones. The project was aimed to develop a bench test which adequately represents field conditions. This benchmark test was then used to investigate how CoF was affected by changes in the main variables so that these variables can be better controlled. Therefore, a propriety laboratory test system was developed to allow measurements of friction and galling under these conditions and to examine the sensitivity of friction to initial surface topography, contact pressure, sliding speed and lubricant type. Samples were produced to represent variables which were possible within the oil and gas industry. A set of data was produced to identify the different frictional values for each combination of variables. The results showed that the initial surface topography and the burnishing in repeated sliding have significant effects on friction. iv In order to understand the correlation between the effects of initial surface roughness and burnishing during the sliding process on the coefficient of friction, a theoretical approach was taken to produce a mathematical model whichutilised the data from the laboratory testing. This gave predictions of the wear, roughness and friction with sliding distance. This data was then compared to the physical testing and found to be in line with the results. The results helped to understand how friction is related to external circumstances in the operation of premium tubular connections.Hunting Energy Service

    Diamond turning of contact lens polymers

    Get PDF
    Contact lens production requires high accuracy and good surface integrity. Surface roughness is generally used to measure the index quality of a turning process. It has been an important response because it has direct influence toward the part performance and the production cost. Hence, choosing optimal cutting parameters will not only improve the quality measure but also the productivity. In this study, an ONSI-56 (Onsifocon A) contact lens buttons were used to investigate the triboelectric phenomena and the effects of turning parameters on surface finish of the lens materials. ONSI-56 specimens are machined by Precitech Nanoform Ultra-grind 250 precision machine and the roughness values of the diamond turned surfaces are measured by Taylor Hopson PGI Profilometer. Electrostatics values were measured using electrostatic voltmeter. An artificial neural network (ANN) and response surface (RS) model were developed to predict surface roughness and electrostatic discharge (ESD) on the turned ONSI-56. In the development of predictive models, turning parameters of cutting speed, feed rate and depth of cut were considered as model variables. The required data for predictive models were obtained by conducting a series of turning test and measuring the surface roughness and ESD data. Good agreement is observed between the predictive models results and the experimental measurements. The ANN and RSM models for ONSI-56 are compared with each other using mean absolute percentage error (MAPE) for accuracy and computational cost

    Glassy Materials Based Microdevices

    Get PDF
    Microtechnology has changed our world since the last century, when silicon microelectronics revolutionized sensor, control and communication areas, with applications extending from domotics to automotive, and from security to biomedicine. The present century, however, is also seeing an accelerating pace of innovation in glassy materials; as an example, glass-ceramics, which successfully combine the properties of an amorphous matrix with those of micro- or nano-crystals, offer a very high flexibility of design to chemists, physicists and engineers, who can conceive and implement advanced microdevices. In a very similar way, the synthesis of glassy polymers in a very wide range of chemical structures offers unprecedented potential of applications. The contemporary availability of microfabrication technologies, such as direct laser writing or 3D printing, which add to the most common processes (deposition, lithography and etching), facilitates the development of novel or advanced microdevices based on glassy materials. Biochemical and biomedical sensors, especially with the lab-on-a-chip target, are one of the most evident proofs of the success of this material platform. Other applications have also emerged in environment, food, and chemical industries. The present Special Issue of Micromachines aims at reviewing the current state-of-the-art and presenting perspectives of further development. Contributions related to the technologies, glassy materials, design and fabrication processes, characterization, and, eventually, applications are welcome
    corecore