9,713 research outputs found

    Smart nanotextiles: materials and their application

    Get PDF
    Textiles are ubiquitous to us, enveloping our skin and surroundings. Not only do they provide a protective shield or act as a comforting cocoon but they also serve esthetic appeal and cultural importance. Recent technologies have allowed the traditional functionality of textiles to be extended. Advances in materials science have added intelligence to textiles and created ‘smart’ clothes. Smart textiles can sense and react to environmental conditions or stimuli, e.g., from mechanical, thermal, chemical, electrical, or magnetic sources (Lam Po Tang and Stylios 2006). Such textiles find uses in many applications ranging from military and security to personalized healthcare, hygiene, and entertainment. Smart textiles may be termed ‘‘passive’’ or ‘‘active.’’ A passive smart textile monitors the wearer’s physiology or the environment, e.g., a shirt with in-built thermistors to log body temperature over time. If actuators are integrated, the textile becomes an active, smart textile as it may respond to a particular stimulus, e.g., the temperature-aware shirt may automatically roll up the sleeves when body temperature rises. The fundamental components in any smart textile are sensors and actuators. Interconnections, power supply, and a control unit are also needed to complete the system. All these components must be integrated into textiles while still retaining the usual tactile, flexible, and comfortable properties that we expect from a textile. Adding new functionalities to textiles while still maintaining the look and feel of the fabric is where nanotechnology has a huge impact on the textile industry. This article describes current developments in materials for smart nanotextiles and some of the many applications where these innovative textiles are of great benefit

    Fully Integrated Biochip Platforms for Advanced Healthcare

    Get PDF
    Recent advances in microelectronics and biosensors are enabling developments of innovative biochips for advanced healthcare by providing fully integrated platforms for continuous monitoring of a large set of human disease biomarkers. Continuous monitoring of several human metabolites can be addressed by using fully integrated and minimally invasive devices located in the sub-cutis, typically in the peritoneal region. This extends the techniques of continuous monitoring of glucose currently being pursued with diabetic patients. However, several issues have to be considered in order to succeed in developing fully integrated and minimally invasive implantable devices. These innovative devices require a high-degree of integration, minimal invasive surgery, long-term biocompatibility, security and privacy in data transmission, high reliability, high reproducibility, high specificity, low detection limit and high sensitivity. Recent advances in the field have already proposed possible solutions for several of these issues. The aim of the present paper is to present a broad spectrum of recent results and to propose future directions of development in order to obtain fully implantable systems for the continuous monitoring of the human metabolism in advanced healthcare applications

    Spatial and spatiotemporal variation in metapopulation structure affects population dynamics in a passively dispersing arthropod

    No full text
    The spatial and temporal variation in the availability of suitable habitat within metapopulations determines colonization-extinction events, regulates local population sizes and eventually affects local population and metapopulation stability. Insights into the impact of such a spatiotemporal variation on the local population and metapopulation dynamics are principally derived from classical metapopulation theory and have not been experimentally validated. By manipulating spatial structure in artificial metapopulations of the spider mite Tetranychus urticae, we test to which degree spatial (mainland-island metapopulations) and spatiotemporal variation (classical metapopulations) in habitat availability affects the dynamics of the metapopulations relative to systems where habitat is constantly available in time and space (patchy metapopulations). Our experiment demonstrates that (i) spatial variation in habitat availability decreases variance in metapopulation size and decreases density-dependent dispersal at the metapopulation level, while (ii) spatiotemporal variation in habitat availability increases patch extinction rates, decreases local population and metapopulation sizes and decreases density dependence in population growth rates. We found dispersal to be negatively density dependent and overall low in the spatial variable mainland-island metapopulation. This demographic variation subsequently impacts local and regional population dynamics and determines patterns of metapopulation stability. Both local and metapopulation-level variabilities are minimized in mainland-island metapopulations relative to classical and patchy ones

    Polymer- and Hybrid-Based Biomaterials for Interstitial, Connective, Vascular, Nerve, Visceral and Musculoskeletal Tissue Engineering

    Get PDF
    In this review, materials based on polymers and hybrids possessing both organic and inorganic contents for repairing or facilitating cell growth in tissue engineering are discussed. Pure polymer based biomaterials are predominantly used to target soft tissues. Stipulated by possibilities of tuning the composition and concentration of their inorganic content, hybrid materials allow to mimic properties of various types of harder tissues. That leads to the concept of “one-matches-all” referring to materials possessing the same polymeric base, but different inorganic content to enable tissue growth and repair, proliferation of cells, and the formation of the ECM (extra cellular matrix). Furthermore, adding drug delivery carriers to coatings and scaffolds designed with such materials brings additional functionality by encapsulating active molecules, antibacterial agents, and growth factors. We discuss here materials and methods of their assembly from a general perspective together with their applications in various tissue engineering sub-areas: interstitial, connective, vascular, nervous, visceral and musculoskeletal tissues. The overall aims of this review are two-fold: (a) to describe the needs and opportunities in the field of bio-medicine, which should be useful for material scientists, and (b) to present capabilities and resources available in the area of materials, which should be of interest for biologists and medical doctors.</jats:p

    Nano-to-Submicron Hydroxyapatite Coatings for Magnesium-based Bioresorbable Implants - Deposition, Characterization, Degradation, Mechanical Properties, and Cytocompatibility.

    Get PDF
    Magnesium (Mg) and its alloys have shown attractive biocompatibility and mechanical strength for medical applications, but low corrosion resistance of Mg in physiological environment limits its broad clinical translation. Hydroxyapatite (HA) nanoparticles (nHA) are promising coating materials for decreasing degradation rates and prolonging mechanical strength of Mg-based implants while enhancing bone healing due to their osteoconductivity and osteoinductivity. Conformal HA coatings with nano-to-submicron structures, namely nHA and mHA coatings, were deposited successfully on Mg plates and rods using a transonic particle acceleration (TPA) process under two different conditions, characterized, and investigated for their effects on Mg degradation in vitro. The nHA and mHA coatings enhanced corrosion resistance of Mg and retained 86-90% of ultimate compressive strength after in vitro immersion in rSBF for 6 weeks, much greater than non-coated Mg that only retained 66% of strength. Mg-based rods with or without coatings showed slower degradation than the respective Mg-based plates in rSBF after 6 weeks, likely because of the greater surface-to-volume ratio of Mg plates than Mg rods. This indicates that Mg-based plate and screw devices may undergo different degradation even when they have the same coatings and are implanted at the same or similar anatomical locations. Therefore, in addition to locations of implantation, the geometry, dimension, surface area, volume, and mass of Mg-based implants and devices should be carefully considered in their design and processing to ensure that they not only provide adequate structural and mechanical stability for bone fixation, but also support the functions of bone cells, as clinically required for craniomaxillofacial (CMF) and orthopedic implants. When the nHA and mHA coated Mg and non-coated Mg plates were cultured with bone marrow derived mesenchymal stem cells (BMSCs) using the in vitro direct culture method, greater cell adhesion densities were observed under indirect contact conditions than that under direct contact conditions for the nHA and mHA coated Mg. In comparison with non-coated Mg, the nHA and mHA coated Mg reduced BMSC adhesion densities directly on the surface, but increased the average BMSC adhesion densities under indirect contact. Further long-term studies in vitro and in vivo are necessary to elucidate the effects of nHA and mHA coatings on cell functions and tissue healing

    Advances of nanotechnology in agro-environmental studies

    Get PDF
    With the increase in the world population and the demand for food, new agricultural practices have been developed to improve food production through the use of more effective pesticides and fertilisers. These technologies can lead to an uncontrolled release of undesired substances into the environment, with the potential to contaminate soil and groundwater. Today, nanotechnology represents a promising approach to improve agricultural production and remediate polluted sites. This paper reviews the recent applications of nanotechnologies in agro-environmental studies with particular attention to the fate of nanomaterials once introduced in water and soil, to the advantages of their use and their possible toxicology. Findings show that the use of nanomaterials can improve the quality of the environment and help detect and remediate polluted sites. Only a small number of nanomaterials demonstrated potential toxic effects. These are discussed in detail
    corecore