1,708 research outputs found

    Automatic generation of named entity taggers leveraging parallel corpora

    Get PDF
    The lack of hand curated data is a major impediment to developing statistical semantic processors for many of the world languages. A major issue of semantic processors in Nat- ural Language Processing (NLP) is that they require manually annotated data to perform accurately. Our work aims to address this issue by leveraging existing annotations and semantic processors from multiple source languages by projecting their annotations via statistical word alignments traditionally used in Machine Translation. Taking the Named Entity Recognition (NER) task as a use case of semantic processing, this work presents a method to automatically induce Named Entity taggers using parallel data, without any manual intervention. Our method leverages existing semantic processors and annotations to overcome the lack of annotation data for a given language. The intuition is to transfer or project semantic annotations, from multiple sources to a target language, by statistical word alignment methods applied to parallel texts (Och and Ney, 2000; Liang et al., 2006). The projected annotations can then be used to automatically generate semantic processors for the target language. In this way we would be able to provide NLP processors with- out training data for the target language. The experiments are focused on 4 languages: German, English, Spanish and Italian, and our empirical evaluation results show that our method obtains competitive results when compared with models trained on gold-standard out-of-domain data. This shows that our projection algorithm is effective to transport NER annotations across languages via parallel data thus providing a fully automatic method to obtain NER taggers for as many as the number of languages aligned via parallel corpora

    YATO: Yet Another deep learning based Text analysis Open toolkit

    Full text link
    We introduce YATO, an open-source, easy-to-use toolkit for text analysis with deep learning. Different from existing heavily engineered toolkits and platforms, YATO is lightweight and user-friendly for researchers from cross-disciplinary areas. Designed in a hierarchical structure, YATO supports free combinations of three types of widely used features including 1) traditional neural networks (CNN, RNN, etc.); 2) pre-trained language models (BERT, RoBERTa, ELECTRA, etc.); and 3) user-customized neural features via a simple configurable file. Benefiting from the advantages of flexibility and ease of use, YATO can facilitate fast reproduction and refinement of state-of-the-art NLP models, and promote the cross-disciplinary applications of NLP techniques. The code, examples, and documentation are publicly available at https://github.com/jiesutd/YATO. A demo video is also available at https://youtu.be/tSjjf5BzfQg

    A Survey on Arabic Named Entity Recognition: Past, Recent Advances, and Future Trends

    Full text link
    As more and more Arabic texts emerged on the Internet, extracting important information from these Arabic texts is especially useful. As a fundamental technology, Named entity recognition (NER) serves as the core component in information extraction technology, while also playing a critical role in many other Natural Language Processing (NLP) systems, such as question answering and knowledge graph building. In this paper, we provide a comprehensive review of the development of Arabic NER, especially the recent advances in deep learning and pre-trained language model. Specifically, we first introduce the background of Arabic NER, including the characteristics of Arabic and existing resources for Arabic NER. Then, we systematically review the development of Arabic NER methods. Traditional Arabic NER systems focus on feature engineering and designing domain-specific rules. In recent years, deep learning methods achieve significant progress by representing texts via continuous vector representations. With the growth of pre-trained language model, Arabic NER yields better performance. Finally, we conclude the method gap between Arabic NER and NER methods from other languages, which helps outline future directions for Arabic NER.Comment: Accepted by IEEE TKD

    Automatic generation of named entity taggers leveraging parallel corpora

    Get PDF
    The lack of hand curated data is a major impediment to developing statistical semantic processors for many of the world languages. A major issue of semantic processors in Nat- ural Language Processing (NLP) is that they require manually annotated data to perform accurately. Our work aims to address this issue by leveraging existing annotations and semantic processors from multiple source languages by projecting their annotations via statistical word alignments traditionally used in Machine Translation. Taking the Named Entity Recognition (NER) task as a use case of semantic processing, this work presents a method to automatically induce Named Entity taggers using parallel data, without any manual intervention. Our method leverages existing semantic processors and annotations to overcome the lack of annotation data for a given language. The intuition is to transfer or project semantic annotations, from multiple sources to a target language, by statistical word alignment methods applied to parallel texts (Och and Ney, 2000; Liang et al., 2006). The projected annotations can then be used to automatically generate semantic processors for the target language. In this way we would be able to provide NLP processors with- out training data for the target language. The experiments are focused on 4 languages: German, English, Spanish and Italian, and our empirical evaluation results show that our method obtains competitive results when compared with models trained on gold-standard out-of-domain data. This shows that our projection algorithm is effective to transport NER annotations across languages via parallel data thus providing a fully automatic method to obtain NER taggers for as many as the number of languages aligned via parallel corpora

    A Survey on Semantic Processing Techniques

    Full text link
    Semantic processing is a fundamental research domain in computational linguistics. In the era of powerful pre-trained language models and large language models, the advancement of research in this domain appears to be decelerating. However, the study of semantics is multi-dimensional in linguistics. The research depth and breadth of computational semantic processing can be largely improved with new technologies. In this survey, we analyzed five semantic processing tasks, e.g., word sense disambiguation, anaphora resolution, named entity recognition, concept extraction, and subjectivity detection. We study relevant theoretical research in these fields, advanced methods, and downstream applications. We connect the surveyed tasks with downstream applications because this may inspire future scholars to fuse these low-level semantic processing tasks with high-level natural language processing tasks. The review of theoretical research may also inspire new tasks and technologies in the semantic processing domain. Finally, we compare the different semantic processing techniques and summarize their technical trends, application trends, and future directions.Comment: Published at Information Fusion, Volume 101, 2024, 101988, ISSN 1566-2535. The equal contribution mark is missed in the published version due to the publication policies. Please contact Prof. Erik Cambria for detail
    • …
    corecore