2,391 research outputs found

    Making decisions based on context: models and applications in cognitive sciences and natural language processing

    Full text link
    It is known that humans are capable of making decisions based on context and generalizing what they have learned. This dissertation considers two related problem areas and proposes different models that take context information into account. By including the context, the proposed models exhibit strong performance in each of the problem areas considered. The first problem area focuses on a context association task studied in cognitive science, which evaluates the ability of a learning agent to associate specific stimuli with an appropriate response in particular spatial contexts. Four neural circuit models are proposed to model how the stimulus and context information are processed to produce a response. The neural networks are trained by modifying the strength of neural connections (weights) using principles of Hebbian learning. Such learning is considered biologically plausible, in contrast to back propagation techniques that do not have a solid neurophysiological basis. A series of theoretical results for the neural circuit models are established, guaranteeing convergence to an optimal configuration when all the stimulus-context pairs are provided during training. Among all the models, a specific model based on ideas from recommender systems trained with a primal-dual update rule, achieves perfect performance in learning and generalizing the mapping from context-stimulus pairs to correct responses. The second problem area considered in the thesis focuses on clinical natural language processing (NLP). A particular application is the development of deep-learning models for analyzing radiology reports. Four NLP tasks are considered including anatomy named entity recognition, negation detection, incidental finding detection, and clinical concept extraction. A hierarchical Recurrent Neural Network (RNN) is proposed for anatomy named entity recognition, which is then used to produce a set of features for incidental finding detection of pulmonary nodules. A clinical context word embedding model is obtained, which is used with an RNN to model clinical concept extraction. Finally, feature-enriched RNN and transformer-based models with contextual word embedding are proposed for negation detection. All these models take the (clinical) context information into account. The models are evaluated on different datasets and are shown to achieve strong performance, largely outperforming the state-of-art

    Automatic Population of Structured Reports from Narrative Pathology Reports

    Get PDF
    There are a number of advantages for the use of structured pathology reports: they can ensure the accuracy and completeness of pathology reporting; it is easier for the referring doctors to glean pertinent information from them. The goal of this thesis is to extract pertinent information from free-text pathology reports and automatically populate structured reports for cancer diseases and identify the commonalities and differences in processing principles to obtain maximum accuracy. Three pathology corpora were annotated with entities and relationships between the entities in this study, namely the melanoma corpus, the colorectal cancer corpus and the lymphoma corpus. A supervised machine-learning based-approach, utilising conditional random fields learners, was developed to recognise medical entities from the corpora. By feature engineering, the best feature configurations were attained, which boosted the F-scores significantly from 4.2% to 6.8% on the training sets. Without proper negation and uncertainty detection, the quality of the structured reports will be diminished. The negation and uncertainty detection modules were built to handle this problem. The modules obtained overall F-scores ranging from 76.6% to 91.0% on the test sets. A relation extraction system was presented to extract four relations from the lymphoma corpus. The system achieved very good performance on the training set, with 100% F-score obtained by the rule-based module and 97.2% F-score attained by the support vector machines classifier. Rule-based approaches were used to generate the structured outputs and populate them to predefined templates. The rule-based system attained over 97% F-scores on the training sets. A pipeline system was implemented with an assembly of all the components described above. It achieved promising results in the end-to-end evaluations, with 86.5%, 84.2% and 78.9% F-scores on the melanoma, colorectal cancer and lymphoma test sets respectively

    Safeguarding Privacy Through Deep Learning Techniques

    Get PDF
    Over the last few years, there has been a growing need to meet minimum security and privacy requirements. Both public and private companies have had to comply with increasingly stringent standards, such as the ISO 27000 family of standards, or the various laws governing the management of personal data. The huge amount of data to be managed has required a huge effort from the employees who, in the absence of automatic techniques, have had to work tirelessly to achieve the certification objectives. Unfortunately, due to the delicate information contained in the documentation relating to these problems, it is difficult if not impossible to obtain material for research and study purposes on which to experiment new ideas and techniques aimed at automating processes, perhaps exploiting what is in ferment in the scientific community and linked to the fields of ontologies and artificial intelligence for data management. In order to bypass this problem, it was decided to examine data related to the medical world, which, especially for important reasons related to the health of individuals, have gradually become more and more freely accessible over time, without affecting the generality of the proposed methods, which can be reapplied to the most diverse fields in which there is a need to manage privacy-sensitive information

    Iowa Engineer, Spring/Summer 1997

    Get PDF
    https://ir.uiowa.edu/iowaengineer/1019/thumbnail.jp

    Design and Mining of Health Information Systems for Process and Patient Care Improvement

    Get PDF
    abstract: In healthcare facilities, health information systems (HISs) are used to serve different purposes. The radiology department adopts multiple HISs in managing their operations and patient care. In general, the HISs that touch radiology fall into two categories: tracking HISs and archive HISs. Electronic Health Records (EHR) is a typical tracking HIS, which tracks the care each patient receives at multiple encounters and facilities. Archive HISs are typically specialized databases to store large-size data collected as part of the patient care. A typical example of an archive HIS is the Picture Archive and Communication System (PACS), which provides economical storage and convenient access to diagnostic images from multiple modalities. How to integrate such HISs and best utilize their data remains a challenging problem due to the disparity of HISs as well as high-dimensionality and heterogeneity of the data. My PhD dissertation research includes three inter-connected and integrated topics and focuses on designing integrated HISs and further developing statistical models and machine learning algorithms for process and patient care improvement. Topic 1: Design of super-HIS and tracking of quality of care (QoC). My research developed an information technology that integrates multiple HISs in radiology, and proposed QoC metrics defined upon the data that measure various dimensions of care. The DDD assisted the clinical practices and enabled an effective intervention for reducing lengthy radiologist turnaround times for patients. Topic 2: Monitoring and change detection of QoC data streams for process improvement. With the super-HIS in place, high-dimensional data streams of QoC metrics are generated. I developed a statistical model for monitoring high- dimensional data streams that integrated Singular Vector Decomposition (SVD) and process control. The algorithm was applied to QoC metrics data, and additionally extended to another application of monitoring traffic data in communication networks. Topic 3: Deep transfer learning of archive HIS data for computer-aided diagnosis (CAD). The novelty of the CAD system is the development of a deep transfer learning algorithm that combines the ideas of transfer learning and multi- modality image integration under the deep learning framework. Our system achieved high accuracy in breast cancer diagnosis compared with conventional machine learning algorithms.Dissertation/ThesisDoctoral Dissertation Industrial Engineering 201
    • …
    corecore