36,358 research outputs found

    MIRACLE at GeoCLEF Query Parsing 2007: Extraction and Classification of Geographical Information

    Get PDF
    This paper describes the participation of MIRACLE research consortium at the Query Parsing task of GeoCLEF 2007. Our system is composed of three main modules. First, the Named Geo-entity Identifier, whose objective is to perform the geo-entity identification and tagging, i.e., to extract the “where” component of the geographical query, should there be any. This module is based on a gazetteer built up from the Geonames geographical database and carries out a sequential process in three steps that consist on geo-entity recognition, geo-entity selection and query tagging. Then, the Query Analyzer parses this tagged query to identify the “what” and “geo-relation” components by means of a rule-based grammar. Finally, a two-level multiclassifier first decides whether the query is indeed a geographical query and, should it be positive, then determines the query type according to the type of information that the user is supposed to be looking for: map, yellow page or information. According to a strict evaluation criterion where a match should have all fields correct, our system reaches a precision value of 42.8% and a recall of 56.6% and our submission is ranked 1st out of 6 participants in the task. A detailed evaluation of the confusion matrixes reveal that some extra effort must be invested in “user-oriented” disambiguation techniques to improve the first level binary classifier for detecting geographical queries, as it is a key component to eliminate many false-positives

    A geo-temporal information extraction service for processing descriptive metadata in digital libraries

    Get PDF
    In the context of digital map libraries, resources are usually described according to metadata records that define the relevant subject, location, time-span, format and keywords. On what concerns locations and time-spans, metadata records are often incomplete or they provide information in a way that is not machine-understandable (e.g. textual descriptions). This paper presents techniques for extracting geotemporal information from text, using relatively simple text mining methods that leverage on a Web gazetteer service. The idea is to go from human-made geotemporal referencing (i.e. using place and period names in textual expressions) into geo-spatial coordinates and time-spans. A prototype system, implementing the proposed methods, is described in detail. Experimental results demonstrate the efficiency and accuracy of the proposed approaches
    • …
    corecore