167 research outputs found

    Hierarchical Contextualized Representation for Named Entity Recognition

    Full text link
    Named entity recognition (NER) models are typically based on the architecture of Bi-directional LSTM (BiLSTM). The constraints of sequential nature and the modeling of single input prevent the full utilization of global information from larger scope, not only in the entire sentence, but also in the entire document (dataset). In this paper, we address these two deficiencies and propose a model augmented with hierarchical contextualized representation: sentence-level representation and document-level representation. In sentence-level, we take different contributions of words in a single sentence into consideration to enhance the sentence representation learned from an independent BiLSTM via label embedding attention mechanism. In document-level, the key-value memory network is adopted to record the document-aware information for each unique word which is sensitive to similarity of context information. Our two-level hierarchical contextualized representations are fused with each input token embedding and corresponding hidden state of BiLSTM, respectively. The experimental results on three benchmark NER datasets (CoNLL-2003 and Ontonotes 5.0 English datasets, CoNLL-2002 Spanish dataset) show that we establish new state-of-the-art results.Comment: Accepted by AAAI 202

    Transformer-based multi-hop question generation

    Get PDF
    Question generation is the parallel task of question answering, where given an input context and, optionally, an answer, the goal is to generate a relevant and fluent natural language question. Although recent works on question generation have experienced success by utilizing sequence-to-sequence models, there is a need for question generation models to handle increasingly complex input contexts to produce increasingly detailed questions. Multi-hop question generation is a more challenging task that aims to generate questions by connecting multiple facts from multiple input contexts. In this work, we apply a transformer model to the task of multi-hop question generation without utilizing any sentence-level supporting fact information. We utilize concepts that have proven effective in single-hop question generation, including a copy mechanism and placeholder tokens. We evaluate our model’s performance on the HotpotQA dataset using automated evaluation metrics, including BLEU, ROUGE and METEOR and show an improvement over the previous work
    • …
    corecore