845 research outputs found

    S+Net: extending functional coordination with extra-functional semantics

    Get PDF
    This technical report introduces S+Net, a compositional coordination language for streaming networks with extra-functional semantics. Compositionality simplifies the specification of complex parallel and distributed applications; extra-functional semantics allow the application designer to reason about and control resource usage, performance and fault handling. The key feature of S+Net is that functional and extra-functional semantics are defined orthogonally from each other. S+Net can be seen as a simultaneous simplification and extension of the existing coordination language S-Net, that gives control of extra-functional behavior to the S-Net programmer. S+Net can also be seen as a transitional research step between S-Net and AstraKahn, another coordination language currently being designed at the University of Hertfordshire. In contrast with AstraKahn which constitutes a re-design from the ground up, S+Net preserves the basic operational semantics of S-Net and thus provides an incremental introduction of extra-functional control in an existing language.Comment: 34 pages, 11 figures, 3 table

    A Case Study in Coordination Programming: Performance Evaluation of S-Net vs Intel's Concurrent Collections

    Get PDF
    We present a programming methodology and runtime performance case study comparing the declarative data flow coordination language S-Net with Intel's Concurrent Collections (CnC). As a coordination language S-Net achieves a near-complete separation of concerns between sequential software components implemented in a separate algorithmic language and their parallel orchestration in an asynchronous data flow streaming network. We investigate the merits of S-Net and CnC with the help of a relevant and non-trivial linear algebra problem: tiled Cholesky decomposition. We describe two alternative S-Net implementations of tiled Cholesky factorization and compare them with two CnC implementations, one with explicit performance tuning and one without, that have previously been used to illustrate Intel CnC. Our experiments on a 48-core machine demonstrate that S-Net manages to outperform CnC on this problem.Comment: 9 pages, 8 figures, 1 table, accepted for PLC 2014 worksho

    Process Realizability

    Full text link
    We develop a notion of realizability for Classical Linear Logic based on a concurrent process calculus.Comment: Appeared in Foundations of Secure Computation: Proceedings of the 1999 Marktoberdorf Summer School, F. L. Bauer and R. Steinbruggen, eds. (IOS Press) 2000, 167-18

    CPL: A Core Language for Cloud Computing -- Technical Report

    Full text link
    Running distributed applications in the cloud involves deployment. That is, distribution and configuration of application services and middleware infrastructure. The considerable complexity of these tasks resulted in the emergence of declarative JSON-based domain-specific deployment languages to develop deployment programs. However, existing deployment programs unsafely compose artifacts written in different languages, leading to bugs that are hard to detect before run time. Furthermore, deployment languages do not provide extension points for custom implementations of existing cloud services such as application-specific load balancing policies. To address these shortcomings, we propose CPL (Cloud Platform Language), a statically-typed core language for programming both distributed applications as well as their deployment on a cloud platform. In CPL, application services and deployment programs interact through statically typed, extensible interfaces, and an application can trigger further deployment at run time. We provide a formal semantics of CPL and demonstrate that it enables type-safe, composable and extensible libraries of service combinators, such as load balancing and fault tolerance.Comment: Technical report accompanying the MODULARITY '16 submissio

    The Geometry of Concurrent Interaction: Handling Multiple Ports by Way of Multiple Tokens (Long Version)

    Get PDF
    We introduce a geometry of interaction model for Mazza's multiport interaction combinators, a graph-theoretic formalism which is able to faithfully capture concurrent computation as embodied by process algebras like the π\pi-calculus. The introduced model is based on token machines in which not one but multiple tokens are allowed to traverse the underlying net at the same time. We prove soundness and adequacy of the introduced model. The former is proved as a simulation result between the token machines one obtains along any reduction sequence. The latter is obtained by a fine analysis of convergence, both in nets and in token machines

    S-Net for multi-memory multicores

    Get PDF
    Copyright ACM, 2010. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in Proceedings of the 5th ACM SIGPLAN Workshop on Declarative Aspects of Multicore Programming: http://doi.acm.org/10.1145/1708046.1708054S-Net is a declarative coordination language and component technology aimed at modern multi-core/many-core architectures and systems-on-chip. It builds on the concept of stream processing to structure dynamically evolving networks of communicating asynchronous components. Components themselves are implemented using a conventional language suitable for the application domain. This two-level software architecture maintains a familiar sequential development environment for large parts of an application and offers a high-level declarative approach to component coordination. In this paper we present a conservative language extension for the placement of components and component networks in a multi-memory environment, i.e. architectures that associate individual compute cores or groups thereof with private memories. We describe a novel distributed runtime system layer that complements our existing multithreaded runtime system for shared memory multicores. Particular emphasis is put on efficient management of data communication. Last not least, we present preliminary experimental data

    Logic programming in the context of multiparadigm programming: the Oz experience

    Full text link
    Oz is a multiparadigm language that supports logic programming as one of its major paradigms. A multiparadigm language is designed to support different programming paradigms (logic, functional, constraint, object-oriented, sequential, concurrent, etc.) with equal ease. This article has two goals: to give a tutorial of logic programming in Oz and to show how logic programming fits naturally into the wider context of multiparadigm programming. Our experience shows that there are two classes of problems, which we call algorithmic and search problems, for which logic programming can help formulate practical solutions. Algorithmic problems have known efficient algorithms. Search problems do not have known efficient algorithms but can be solved with search. The Oz support for logic programming targets these two problem classes specifically, using the concepts needed for each. This is in contrast to the Prolog approach, which targets both classes with one set of concepts, which results in less than optimal support for each class. To explain the essential difference between algorithmic and search programs, we define the Oz execution model. This model subsumes both concurrent logic programming (committed-choice-style) and search-based logic programming (Prolog-style). Instead of Horn clause syntax, Oz has a simple, fully compositional, higher-order syntax that accommodates the abilities of the language. We conclude with lessons learned from this work, a brief history of Oz, and many entry points into the Oz literature.Comment: 48 pages, to appear in the journal "Theory and Practice of Logic Programming

    Expressiveness via Intensionality and Concurrency

    Get PDF
    International audienceComputation can be considered by taking into account two dimensions: extensional versus intensional, and sequential versus concurrent. Traditionally sequential extensional computation can be captured by the lambda-calculus. However, recent work shows that there are more expressive intensional calculi such as SF-calculus. Traditionally process calculi capture computation by encoding the lambda-calculus, such as in the pi-calculus. Following this increased expressiveness via intensionality, other recent work has shown that concurrent pattern calculus is more expressive than pi-calculus. This paper formalises the relative expressiveness of all four of these calculi by placing them on a square whose edges are irreversible encodings. This square is representative of a more general result: that expressiveness increases with both intensionality and concurrency
    corecore