2,411 research outputs found

    A survey of partial differential equations in geometric design

    Get PDF
    YesComputer aided geometric design is an area where the improvement of surface generation techniques is an everlasting demand since faster and more accurate geometric models are required. Traditional methods for generating surfaces were initially mainly based upon interpolation algorithms. Recently, partial differential equations (PDE) were introduced as a valuable tool for geometric modelling since they offer a number of features from which these areas can benefit. This work summarises the uses given to PDE surfaces as a surface generation technique togethe

    Geometric Modeling of Cellular Materials for Additive Manufacturing in Biomedical Field: A Review

    Get PDF
    Advances in additive manufacturing technologies facilitate the fabrication of cellular materials that have tailored functional characteristics. The application of solid freeform fabrication techniques is especially exploited in designing scaffolds for tissue engineering. In this review, firstly, a classification of cellular materials from a geometric point of view is proposed; then, the main approaches on geometric modeling of cellular materials are discussed. Finally, an investigation on porous scaffolds fabricated by additive manufacturing technologies is pointed out. Perspectives in geometric modeling of scaffolds for tissue engineering are also proposed

    BIM AUTOMATION: ADVANCED MODELING GENERATIVE PROCESS for COMPLEX STRUCTURES

    Get PDF
    The new paradigm of the complexity of modern and historic structures, which are characterised by complex forms, morphological and typological variables, is one of the greatest challenges for building information modelling (BIM). Generation of complex parametric models needs new scientific knowledge concerning new digital technologies. These elements are helpful to store a vast quantity of information during the life cycle of buildings (LCB). The latest developments of parametric applications do not provide advanced tools, resulting in time-consuming work for the generation of models. This paper presents a method capable of processing and creating complex parametric Building Information Models (BIM) with Non-Uniform to NURBS) with multiple levels of details (Mixed and ReverseLoD) based on accurate 3D photogrammetric and laser scanning surveys. Complex 3D elements are converted into parametric BIM software and finite element applications (BIM to FEA) using specific exchange formats and new modelling tools. The proposed approach has been applied to different case studies: the BIM of modern structure for the courtyard of West Block on Parliament Hill in Ottawa (Ontario) and the BIM of Masegra Castel in Sondrio (Italy), encouraging the dissemination and interaction of scientific results without losing information during the generative process

    Kernel arquitecture for CAD/CAM in shipbuilding enviroments

    Get PDF
    The capabilities of complex software products such as CAD/CAM systems are strongly supported by basic information technologies related with data management, visualization, communication, geometry modeling and others related with the development process. These basic information technologies are involved in a continuous evolution process, but over recent years this evolution has been dramatic. The main reason for this has been that new hardware capabilities (including graphic cards) are available at very low cost, but also a contributing factor has been the evolution of the prices of basic software. To take advantage of these new features, the existing CAD/CAM systems must undergo a complete and drastic redesign. This process is complicated but strategic for the future evolution of a system. There are several examples in the market of how a bad decision has lead to a cul-de-sac (both technically and commercially). This paper describes what the authors consider are the basic architectural components of a kernel for a CAD/CAM system oriented to shipbuilding. The proposed solution is a combination of in-house developed frameworks together with commercial products that are accepted as standard components. The proportion of in-house frameworks within this combination of products is a key factor, especially when considering CAD/CAM systems oriented to shipbuilding. General-purpose CAD/CAM systems are mainly oriented to the mechanical CAD market. For this reason several basic products exist devoted to geometry modelling in this context. But these basic products are not well suited to deal with the very specific geometry modelling requirements of a CAD/CAM system oriented to shipbuilding. The complexity of the ship model, the different model requirements through its short and changing life cycle and the many different disciplines involved in the process are reasons for this inadequacy. Apart from these basic frameworks, specific shipbuilding frameworks are also required. This second layer is built over the basic technology components mentioned above. This paper describes in detail the technological frameworks which have been used to develop the latest FORAN version.Postprint (published version

    HBIM challenge among the paradigm of complexity, tools and preservation: The Basilica di Collemaggio 8 years after the earthquake (L'Aquila)

    Get PDF
    In December 2012 ENIservizi (the Italian multi-national energy agency operating in many countries), after the Earthquake that occurred in April 2009, decided to undertake the project 'Re-start from Collemaggio' with the aim of giving new hope to the L'Aquila community, funding around 14 million Euro to restore the Basilica di Collemaggio. The Superintendence Office carried on the restoration project with the scientific support of the Università degli Studi de L'Aquila and the Università La Sapienza di Roma, under the coordination of the Politecnico di Milano. ENIservizi, aware of the BIM potential in the complex building and infrastructure domain in the world, required an advanced HBIM from the laser scanner and photogrammetric surveying to support the diagnostic analysis, the design project, the tender and the restoration itself, today still on course. Plans and vertical sections were delivered (2012) starting from the surveying campaigns (February and June 2013), together with the first HBIM advancement from the end of 2012 in support of the preliminary-definitive-executive steps of the restoration design project (2013-14-15). Five years later, this paper tries to make a synthesis of the different lessons learnt, in addition to the positive and critical aspects relating HBIM feasibility, sustainability and usefulness to the challenging restoration work. In particular, the Collemaggio BIM experience anticipated the new Italian Public Procurement Legislation (D.Lgs 50/2016, Nuovo Codice degli Appalti pubblici) aligned with to the EUPPD 24/2014: The EU Directive on Public Procurement asked all the 28 EU countries to adopt building informative modelling by February 2016 in order to support the whole LCM (Life Cycle Management), starting from the project and the intervention, through rewarding scores or mandatory regulations. Many analyses foresees to save from around 5% to 15% of the overall investment by adopting mature BIM (Level 3 to 5), particularly 4D remotely controlled BIM in support of the LCM, as in the case of maintenance and management process. The tender for Basilica restoration was published in 2015: The process was not developed enough to introduce selective criteria based on BIM adoption by the Construction Industry due to the lack of legislation at that time and the lack of BIM skills among the companies. Nevertheless ENIservizi also separately funded aside the HBIM of the Basilica to tackle an advanced BIM able to address decision-making processes in the heritage domain among the different actors: To support operators, architects, structural engineers, economic computation, construction site management and restoration, the theoretical and practical approach adopted by the HBIM, overcame the current logic based on sequential LoD (from simplex to complex, from the preliminary to the executive design) that is typical of new constructions in favour of a complex LoD approach that could guarantee management of the richness, unicity and multiplicity of each component and the maximum degree of knowledge in order to derive the decisions from the starting phases of the project. On the lesson learnt from this experience, the process of updating the current codification criteria (UNI11337-2009) was started with a draft proposal stimulating a debate for the future of HBIM adoption
    corecore