51 research outputs found

    A Data-Centric Solution to NonHomogeneous Dehazing via Vision Transformer

    Full text link
    Recent years have witnessed an increased interest in image dehazing. Many deep learning methods have been proposed to tackle this challenge, and have made significant accomplishments dealing with homogeneous haze. However, these solutions cannot maintain comparable performance when they are applied to images with non-homogeneous haze, e.g., NH-HAZE23 dataset introduced by NTIRE challenges. One of the reasons for such failures is that non-homogeneous haze does not obey one of the assumptions that is required for modeling homogeneous haze. In addition, a large number of pairs of non-homogeneous hazy image and the clean counterpart is required using traditional end-to-end training approaches, while NH-HAZE23 dataset is of limited quantities. Although it is possible to augment the NH-HAZE23 dataset by leveraging other non-homogeneous dehazing datasets, we observe that it is necessary to design a proper data-preprocessing approach that reduces the distribution gaps between the target dataset and the augmented one. This finding indeed aligns with the essence of data-centric AI. With a novel network architecture and a principled data-preprocessing approach that systematically enhances data quality, we present an innovative dehazing method. Specifically, we apply RGB-channel-wise transformations on the augmented datasets, and incorporate the state-of-the-art transformers as the backbone in the two-branch framework. We conduct extensive experiments and ablation study to demonstrate the effectiveness of our proposed method.Comment: Accepted by CVPRW 202

    Streamlined Global and Local Features Combinator (SGLC) for High Resolution Image Dehazing

    Full text link
    Image Dehazing aims to remove atmospheric fog or haze from an image. Although the Dehazing models have evolved a lot in recent years, few have precisely tackled the problem of High-Resolution hazy images. For this kind of image, the model needs to work on a downscaled version of the image or on cropped patches from it. In both cases, the accuracy will drop. This is primarily due to the inherent failure to combine global and local features when the image size increases. The Dehazing model requires global features to understand the general scene peculiarities and the local features to work better with fine and pixel details. In this study, we propose the Streamlined Global and Local Features Combinator (SGLC) to solve these issues and to optimize the application of any Dehazing model to High-Resolution images. The SGLC contains two successive blocks. The first is the Global Features Generator (GFG) which generates the first version of the Dehazed image containing strong global features. The second block is the Local Features Enhancer (LFE) which improves the local feature details inside the previously generated image. When tested on the Uformer architecture for Dehazing, SGLC increased the PSNR metric by a significant margin. Any other model can be incorporated inside the SGLC process to improve its efficiency on High-Resolution input data.Comment: Accepted in CVPR 2023 Workshop
    • …
    corecore