519 research outputs found

    NSGA-II for solving multiobjective integer minimum cost flow problem with probabilistic tree-based representation

    Get PDF
    Network flow optimisation has many real-world applications. The minimum cost flow problem (MCFP) is the most common network flow problem, which can also be formulated as a multiobjective optimisation problem, with multiple criteria such as time, cost, and distance being considered simultaneously. Although there exist several multiobjective mathematical programming techniques, they often assume linearity or convexity of the cost functions, which are unrealistic in many realworld situations. In this paper, we propose to use the non-dominated sorting genetic algorithm, NSGA-II, to solve this sort of Multiobjective MCFPs (MOMCFPs), because of its robustness in dealing with optimisation problems of linear as well as nonlinear properties. We adopt a probabilistic tree-based representation scheme, and apply NSGA-II to solve the multiobjective integer minimum cost flow problem (MOIMCFP). Our experimental results demonstrate that the proposed method has superior performance compared to those of the mathematical programming methods in terms of the quality as well as the diversity of solutions approximating the Pareto front. In particular, the proposed method is robust in handling linear as well as nonlinear cost functions

    Lost in optimisation of water distribution systems? A literature review of system design

    Get PDF
    This is the final version of the article. Available from MDPI via the DOI in this record.Optimisation of water distribution system design is a well-established research field, which has been extremely productive since the end of the 1980s. Its primary focus is to minimise the cost of a proposed pipe network infrastructure. This paper reviews in a systematic manner articles published over the past three decades, which are relevant to the design of new water distribution systems, and the strengthening, expansion and rehabilitation of existing water distribution systems, inclusive of design timing, parameter uncertainty, water quality, and operational considerations. It identifies trends and limits in the field, and provides future research directions. Exclusively, this review paper also contains comprehensive information from over one hundred and twenty publications in a tabular form, including optimisation model formulations, solution methodologies used, and other important details

    A bi-objective turning restriction design problem in urban road networks

    Get PDF
    postprin

    Metaheuristics for Transmission Network Expansion Planning

    Get PDF
    This chapter presents the characteristics of the metaheuristic algorithms used to solve the transmission network expansion planning (TNEP) problem. The algorithms used to handle single or multiple objectives are discussed on the basis of selected literature contributions. Besides the main objective given by the costs of the transmission system infrastructure, various other objectives are taken into account, representing generation, demand, reliability and environmental aspects. In the single-objective case, many metaheuristics have been proposed, in general without making strong comparisons with other solution methods and without providing superior results with respect to classical mathematical programming. In the multi-objective case, there is a better convenience of using metaheuristics able to handle conflicting objectives, in particular with a Pareto front-based approach. In all cases, improvements are still expected in the definition of benchmark functions, benchmark networks and robust comparison criteria

    On the role of metaheuristic optimization in bioinformatics

    Get PDF
    Metaheuristic algorithms are employed to solve complex and large-scale optimization problems in many different fields, from transportation and smart cities to finance. This paper discusses how metaheuristic algorithms are being applied to solve different optimization problems in the area of bioinformatics. While the text provides references to many optimization problems in the area, it focuses on those that have attracted more interest from the optimization community. Among the problems analyzed, the paper discusses in more detail the molecular docking problem, the protein structure prediction, phylogenetic inference, and different string problems. In addition, references to other relevant optimization problems are also given, including those related to medical imaging or gene selection for classification. From the previous analysis, the paper generates insights on research opportunities for the Operations Research and Computer Science communities in the field of bioinformatics
    corecore