1,840 research outputs found

    Non-quasiparticle states in Co2_2MnSi evidenced through magnetic tunnel junction spectroscopy measurements

    Get PDF
    We investigate the effects of electronic correlations in the full-Heusler Co2_2MnSi, by combining a theoretical analysis of the spin-resolved density of states with tunneling-conductance spectroscopy measurements using Co2_2MnSi as electrode. Both experimental and theoretical results confirm the existence of so-called non-quasiparticle states and their crucial contribution to the finite-temperature spin polarisation in this material.Comment: Repalced Fig. 1. of PRL, 100, 086402 (2008), better k-space resolution for DOS around Fermi energ

    Half-metallicity and magnetism in the Co2_2MnAl/CoMnVAl heterostructure

    Full text link
    We present a study of the electronic structure and magnetism of Co2_2MnAl, CoMnVAl and their heterostructure. We employ a combination of density-functional theory and dynamical mean-field theory (DFT+DMFT). We find that Co2_2MnAl is a half-metallic ferromagnet, whose electronic and magnetic properties are not drastically changed by strong electronic correlations, static or dynamic. Non-quasiparticle states are shown to appear in the minority spin gap without affecting the spin-polarization at the Fermi level predicted by standard DFT. We find that CoMnVAl is a semiconductor or a semi-metal, depending on the employed computational approach. We then focus on the electronic and magnetic properties of the Co2_2MnAl/CoMnVAl heterostructure, predicted by previous first principle calculations as a possible candidate for spin-injecting devices. We find that two interfaces, Co-Co/V-Al and Co-Mn/Mn-Al, preserve the half-metallic character, with and without including electronic correlations. We also analyse the magnetic exchange interactions in the bulk and at the interfaces. At the Co-Mn/Mn-Al interface, competing magnetic interactions are likely to favor the formation of a non-collinear magnetic order, which is detrimental for the spin-polarization.Comment: 15 pages, 16 figure

    Energy decay and frequency shift of a superconducting qubit from non-equilibrium quasiparticles

    Full text link
    Quasiparticles are an important decoherence mechanism in superconducting qubits, and can be described with a complex admittance that is a generalization of the Mattis-Bardeen theory. By injecting non-equilibrium quasiparticles with a tunnel junction, we verify qualitatively the expected change of the decay rate and frequency in a phase qubit. With their relative change in agreement to within 4% of prediction, the theory can be reliably used to infer quasiparticle density. We describe how settling of the decay rate may allow determination of whether qubit energy relaxation is limited by non-equilibrium quasiparticles.Comment: Main paper: 4 pages, 3 figures, 1 table. Supplementary material: 8 pages, 3 figure

    Thin film dielectric microstrip kinetic inductance detectors

    Get PDF
    Microwave Kinetic Inductance Detectors, or MKIDs, are a type of low temperature detector that exhibit intrinsic frequency domain multiplexing at microwave frequencies. We present the first theory and measurements on a MKID based on a microstrip transmission line resonator. A complete characterization of the dielectric loss and noise properties of these resonators is performed, and agrees well with the derived theory. A competitive noise equivalent power of 5×1017\times10^{-17} W Hz1/2^{-1/2} at 1 Hz has been demonstrated. The resonators exhibit the highest quality factors known in a microstrip resonator with a deposited thin film dielectric.Comment: 10 pages, 4 figures, APL accepte

    Transverse-energy distributions at midrapidity in pp++pp, dd++Au, and Au++Au collisions at sNN=62.4\sqrt{s_{_{NN}}}=62.4--200~GeV and implications for particle-production models

    Full text link
    Measurements of the midrapidity transverse energy distribution, d\Et/d\eta, are presented for pp++pp, dd++Au, and Au++Au collisions at sNN=200\sqrt{s_{_{NN}}}=200 GeV and additionally for Au++Au collisions at sNN=62.4\sqrt{s_{_{NN}}}=62.4 and 130 GeV. The d\Et/d\eta distributions are first compared with the number of nucleon participants NpartN_{\rm part}, number of binary collisions NcollN_{\rm coll}, and number of constituent-quark participants NqpN_{qp} calculated from a Glauber model based on the nuclear geometry. For Au++Au, \mean{d\Et/d\eta}/N_{\rm part} increases with NpartN_{\rm part}, while \mean{d\Et/d\eta}/N_{qp} is approximately constant for all three energies. This indicates that the two component ansatz, dET/dη(1x)Npart/2+xNcolldE_{T}/d\eta \propto (1-x) N_{\rm part}/2 + x N_{\rm coll}, which has been used to represent ETE_T distributions, is simply a proxy for NqpN_{qp}, and that the NcollN_{\rm coll} term does not represent a hard-scattering component in ETE_T distributions. The dET/dηdE_{T}/d\eta distributions of Au++Au and dd++Au are then calculated from the measured pp++pp ETE_T distribution using two models that both reproduce the Au++Au data. However, while the number-of-constituent-quark-participant model agrees well with the dd++Au data, the additive-quark model does not.Comment: 391 authors, 24 pages, 19 figures, and 15 Tables. Submitted to Phys. Rev. C. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are publicly available at http://www.phenix.bnl.gov/papers.htm

    Half-metallic ferromagnets: From band structure to many-body effects

    Get PDF
    A review of new developments in theoretical and experimental electronic structure investigations of half-metallic ferromagnets (HMF) is presented. Being semiconductors for one spin projection and metals for another ones, these substances are promising magnetic materials for applications in spintronics (i.e., spin-dependent electronics). Classification of HMF by the peculiarities of their electronic structure and chemical bonding is discussed. Effects of electron-magnon interaction in HMF and their manifestations in magnetic, spectral, thermodynamic, and transport properties are considered. Especial attention is paid to appearance of non-quasiparticle states in the energy gap, which provide an instructive example of essentially many-body features in the electronic structure. State-of-art electronic calculations for correlated dd-systems is discussed, and results for specific HMF (Heusler alloys, zinc-blende structure compounds, CrO2,_{2}, Fe3_{3}O4_{4}) are reviewed.Comment: to be published in Reviews of Modern Physics, vol 80, issue

    Probing quasiparticle excitations in a hybrid single electron transistor

    Get PDF
    We investigate the behavior of quasiparticles in a hybrid electron turnstile with the aim of improving its performance as a metrological current source. The device is used to directly probe the density of quasiparticles and monitor their relaxation into normal metal traps. We compare different trap geometries and reach quasiparticle densities below 3um^-3 for pumping frequencies of 20 MHz. Our data show that quasiparticles are excited both by the device operation itself and by the electromagnetic environment of the sample. Our observations can be modelled on a quantitative level with a sequential tunneling model and a simple diffusion equation
    corecore