8,844 research outputs found

    On the tractability of some natural packing, covering and partitioning problems

    Get PDF
    In this paper we fix 7 types of undirected graphs: paths, paths with prescribed endvertices, circuits, forests, spanning trees, (not necessarily spanning) trees and cuts. Given an undirected graph G=(V,E)G=(V,E) and two "object types" A\mathrm{A} and B\mathrm{B} chosen from the alternatives above, we consider the following questions. \textbf{Packing problem:} can we find an object of type A\mathrm{A} and one of type B\mathrm{B} in the edge set EE of GG, so that they are edge-disjoint? \textbf{Partitioning problem:} can we partition EE into an object of type A\mathrm{A} and one of type B\mathrm{B}? \textbf{Covering problem:} can we cover EE with an object of type A\mathrm{A}, and an object of type B\mathrm{B}? This framework includes 44 natural graph theoretic questions. Some of these problems were well-known before, for example covering the edge-set of a graph with two spanning trees, or finding an ss-tt path PP and an s′s'-t′t' path P′P' that are edge-disjoint. However, many others were not, for example can we find an ss-tt path P⊆EP\subseteq E and a spanning tree T⊆ET\subseteq E that are edge-disjoint? Most of these previously unknown problems turned out to be NP-complete, many of them even in planar graphs. This paper determines the status of these 44 problems. For the NP-complete problems we also investigate the planar version, for the polynomial problems we consider the matroidal generalization (wherever this makes sense)

    Some NP-complete edge packing and partitioning problems in planar graphs

    Full text link
    Graph packing and partitioning problems have been studied in many contexts, including from the algorithmic complexity perspective. Consider the packing problem of determining whether a graph contains a spanning tree and a cycle that do not share edges. Bern\'ath and Kir\'aly proved that this decision problem is NP-complete and asked if the same result holds when restricting to planar graphs. Similarly, they showed that the packing problem with a spanning tree and a path between two distinguished vertices is NP-complete. They also established the NP-completeness of the partitioning problem of determining whether the edge set of a graph can be partitioned into a spanning tree and a (not-necessarily spanning) tree. We prove that all three problems remain NP-complete even when restricted to planar graphs.Comment: 6 pages, 2 figure

    Vertex Disjoint Path in Upward Planar Graphs

    Full text link
    The kk-vertex disjoint paths problem is one of the most studied problems in algorithmic graph theory. In 1994, Schrijver proved that the problem can be solved in polynomial time for every fixed kk when restricted to the class of planar digraphs and it was a long standing open question whether it is fixed-parameter tractable (with respect to parameter kk) on this restricted class. Only recently, \cite{CMPP}.\ achieved a major breakthrough and answered the question positively. Despite the importance of this result (and the brilliance of their proof), it is of rather theoretical importance. Their proof technique is both technically extremely involved and also has at least double exponential parameter dependence. Thus, it seems unrealistic that the algorithm could actually be implemented. In this paper, therefore, we study a smaller class of planar digraphs, the class of upward planar digraphs, a well studied class of planar graphs which can be drawn in a plane such that all edges are drawn upwards. We show that on the class of upward planar digraphs the problem (i) remains NP-complete and (ii) the problem is fixed-parameter tractable. While membership in FPT follows immediately from \cite{CMPP}'s general result, our algorithm has only single exponential parameter dependency compared to the double exponential parameter dependence for general planar digraphs. Furthermore, our algorithm can easily be implemented, in contrast to the algorithm in \cite{CMPP}.Comment: 14 page

    Arc-Disjoint Paths and Trees in 2-Regular Digraphs

    Full text link
    An out-(in-)branching B_s^+ (B_s^-) rooted at s in a digraph D is a connected spanning subdigraph of D in which every vertex x != s has precisely one arc entering (leaving) it and s has no arcs entering (leaving) it. We settle the complexity of the following two problems: 1) Given a 2-regular digraph DD, decide if it contains two arc-disjoint branchings B^+_u, B^-_v. 2) Given a 2-regular digraph D, decide if it contains an out-branching B^+_u such that D remains connected after removing the arcs of B^+_u. Both problems are NP-complete for general digraphs. We prove that the first problem remains NP-complete for 2-regular digraphs, whereas the second problem turns out to be polynomial when we do not prescribe the root in advance. We also prove that, for 2-regular digraphs, the latter problem is in fact equivalent to deciding if DD contains two arc-disjoint out-branchings. We generalize this result to k-regular digraphs where we want to find a number of pairwise arc-disjoint spanning trees and out-branchings such that there are k in total, again without prescribing any roots.Comment: 9 pages, 7 figure

    Label-connected graphs and the gossip problem

    Get PDF
    A graph with m edges is called label-connected if the edges can be labeled with real numbers in such a way that, for every pair (u, v) of vertices, there is a (u, v)-path with ascending labels. The minimum number of edges of a label-connected graph on n vertices equals the minimum number of calls in the gossip problem for n persons, which is known to be 2n − 4 for n ≥ 4. A polynomial characterization of label-connected graphs with n vertices and 2n − 4 edges is obtained. For a graph G, let θ(G) denote the minimum number of edges that have to be added to E(G) in order to create a graph with two edge-disjoint spanning trees. It is shown that for a graph G to be label-connected, θ(G) ≤ 2 is necessary and θ(G) ≤ 1 is sufficient. For i = 1, 2, the condition θ(G) ≤ i can be checked in polynomial time. Yet recognizing label-connected graphs is an NP-complete problem. This is established by first showing that the following problem is NP-complete: Given a graph G and two vertices u and v of G, does there exist a (u, v)-path P in G such that G−E(P) is connected

    The maximum disjoint paths problem on multi-relations social networks

    Get PDF
    Motivated by applications to social network analysis (SNA), we study the problem of finding the maximum number of disjoint uni-color paths in an edge-colored graph. We show the NP-hardness and the approximability of the problem, and both approximation and exact algorithms are proposed. Since short paths are much more significant in SNA, we also study the length-bounded version of the problem, in which the lengths of paths are required to be upper bounded by a fixed integer ll. It is shown that the problem can be solved in polynomial time for l=3l=3 and is NP-hard for l≥4l\geq 4. We also show that the problem can be approximated with ratio (l−1)/2+ϵ(l-1)/2+\epsilon in polynomial time for any ϵ>0\epsilon >0. Particularly, for l=4l=4, we develop an efficient 2-approximation algorithm
    • …
    corecore